We find two series expansions for Legendre's second incomplete elliptic integral $E(\lambda, k)$ in terms of recursively computed elementary functions. Both expansions converge at every point of the unit square in the $(\lambda, k)$ plane. Partial sums of the proposed expansions form a sequence of approximations to $E(\lambda,k)$ which are asymptotic when $\lambda$ and/or $k$ tend to unity, including when both approach the logarithmic singularity $\lambda=k=1$ from any direction. Explicit two-sided error bounds are given at each approximation order. These bounds yield a sequence of increasingly precise asymptotically correct two-sided inequalities for $E(\lambda, k)$. For the reader's convenience we further present explicit expressions for low-order approximations and numerical examples to illustrate their accuracy. Our derivations are based on series rearrangements, hypergeometric summation algorithms and extensive use of the properties of the generalized hypergeometric functions including some recent inequalities.
In this paper, we study a priori error estimates for the finite element approximation of the nonlinear Schr\"{o}dinger-Poisson model. The electron density is defined by an infinite series over all eigenvalues of the Hamiltonian operator. To establish the error estimate, we present a unified theory of error estimates for a class of nonlinear problems. The theory is based on three conditions: 1) the original problem has a solution $u$ which is the fixed point of a compact operator $\Ca$, 2) $\Ca$ is Fr\'{e}chet-differentiable at $u$ and $\Ci-\Ca'[u]$ has a bounded inverse in a neighborhood of $u$, and 3) there exists an operator $\Ca_h$ which converges to $\Ca$ in the neighborhood of $u$. The theory states that $\Ca_h$ has a fixed point $u_h$ which solves the approximate problem. It also gives the error estimate between $u$ and $u_h$, without assumptions on the well-posedness of the approximate problem. We apply the unified theory to the finite element approximation of the Schr\"{o}dinger-Poisson model and obtain optimal error estimate between the numerical solution and the exact solution. Numerical experiments are presented to verify the convergence rates of numerical solutions.
An expansion procedure using third kind Chebyshev polynomials as base functions is suggested for solving second type Volterra integral equations with logarithmic kernels. The algorithm's convergence is studied and some illustrative examples are presented to show the method's efficiency and reliability, comparisons with other methods in the literature are made.
The starting point for much of multivariate analysis (MVA) is an $n\times p$ data matrix whose $n$ rows represent observations and whose $p$ columns represent variables. Some multivariate data sets, however, may be best conceptualized not as $n$ discrete $p$-variate observations, but as $p$ curves or functions defined on a common time interval. We introduce a framework for extending techniques of multivariate analysis to such settings. The proposed framework rests on the assumption that the curves can be represented as linear combinations of basis functions such as B-splines. This is formally identical to the Ramsay-Silverman representation of functional data; but whereas functional data analysis extends MVA to the case of observations that are curves rather than vectors -- heuristically, $n\times p$ data with $p$ infinite -- we are instead concerned with what happens when $n$ is infinite. We describe how to translate the classical MVA methods of covariance and correlation estimation, principal component analysis, Fisher's linear discriminant analysis, and $k$-means clustering to the continuous-time setting. We illustrate the methods with a novel perspective on a well-known Canadian weather data set, and with applications to neurobiological and environmetric data. The methods are implemented in the publicly available R package \texttt{ctmva}.
We study the size of a neural network needed to approximate the maximum function over $d$ inputs, in the most basic setting of approximating with respect to the $L_2$ norm, for continuous distributions, for a network that uses ReLU activations. We provide new lower and upper bounds on the width required for approximation across various depths. Our results establish new depth separations between depth 2 and 3, and depth 3 and 5 networks, as well as providing a depth $\mathcal{O}(\log(\log(d)))$ and width $\mathcal{O}(d)$ construction which approximates the maximum function, significantly improving upon the depth requirements of the best previously known bounds for networks with linearly-bounded width. Our depth separation results are facilitated by a new lower bound for depth 2 networks approximating the maximum function over the uniform distribution, assuming an exponential upper bound on the size of the weights. Furthermore, we are able to use this depth 2 lower bound to provide tight bounds on the number of neurons needed to approximate the maximum by a depth 3 network. Our lower bounds are of potentially broad interest as they apply to the widely studied and used \emph{max} function, in contrast to many previous results that base their bounds on specially constructed or pathological functions and distributions.
Integral circulant graphs are proposed as models for quantum spin networks that permit a quantum phenomenon called perfect state transfer. Specifically, it is important to know how far information can potentially be transferred between nodes of the quantum networks modelled by integral circulant graphs and this task is related to calculating the maximal diameter of a graph. The integral circulant graph $ICG_n (D)$ has the vertex set $Z_n = \{0, 1, 2, \ldots, n - 1\}$ and vertices $a$ and $b$ are adjacent if $\gcd(a-b,n)\in D$, where $D \subseteq \{d : d \mid n,\ 1\leq d<n\}$. Motivated by the result on the upper bound of the diameter of $ICG_n(D)$ given in [N. Saxena, S. Severini, I. Shparlinski, \textit{Parameters of integral circulant graphs and periodic quantum dynamics}, International Journal of Quantum Information 5 (2007), 417--430], according to which $2|D|+1$ represents one such bound, in this paper we prove that the maximal value of the diameter of the integral circulant graph $ICG_n(D)$ of a given order $n$ with its prime factorization $p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, is equal to $r(n)$ or $r(n)+1$, where $r(n)=k + |\{ i \ | \alpha_i> 1,\ 1\leq i\leq k \}|$, depending on whether $n\not\in 4N+2$ or not, respectively. Furthermore, we show that, for a given order $n$, a divisor set $D$ with $|D|\leq k$ can always be found such that this bound is attained. Finally, we calculate the maximal diameter in the class of integral circulant graphs of a given order $n$ and cardinality of the divisor set $t\leq k$ and characterize all extremal graphs. We actually show that the maximal diameter can have the values $2t$, $2t+1$, $r(n)$ and $r(n)+1$ depending on the values of $t$ and $n$. This way we further improve the upper bound of Saxena, Severini and Shparlinski and we also characterize all graphs whose diameters are equal to $2|D|+1$, thus generalizing a result in that paper.
We propose an optimistic estimate to evaluate the best possible fitting performance of nonlinear models. It yields an optimistic sample size that quantifies the smallest possible sample size to fit/recover a target function using a nonlinear model. We estimate the optimistic sample sizes for matrix factorization models, deep models, and deep neural networks (DNNs) with fully-connected or convolutional architecture. For each nonlinear model, our estimates predict a specific subset of targets that can be fitted at overparameterization, which are confirmed by our experiments. Our optimistic estimate reveals two special properties of the DNN models -- free expressiveness in width and costly expressiveness in connection. These properties suggest the following architecture design principles of DNNs: (i) feel free to add neurons/kernels; (ii) restrain from connecting neurons. Overall, our optimistic estimate theoretically unveils the vast potential of nonlinear models in fitting at overparameterization. Based on this framework, we anticipate gaining a deeper understanding of how and why numerous nonlinear models such as DNNs can effectively realize their potential in practice in the near future.
In the present work, we investigate a model of the invasion of healthy tissue by cancer cells which is described by a system of nonlinear PDEs consisting of a cross-diffusion-reaction equation and two additional nonlinear ordinary differential equations. We show that when the convective part of the system, the chemotactic term, is dominant, then straightforward numerical methods for the studied system may be unstable. We present an implicit finite element method using conforming $P_1$ or $Q_1$ finite elements to discretize the model in space and the $\theta$-method for discretization in time. The discrete problem is stabilized using a nonlinear flux-corrected transport approach. It is proved that both the nonlinear scheme and the linearized problems used in fixed-point iterations are solvable and positivity preserving. Several numerical experiments are presented in 2D using the deal.II library to demonstrate the performance of the proposed method.
The criticality problem in nuclear engineering asks for the principal eigen-pair of a Boltzmann operator describing neutron transport in a reactor core. Being able to reliably design, and control such reactors requires assessing these quantities within quantifiable accuracy tolerances. In this paper we propose a paradigm that deviates from the common practice of approximately solving the corresponding spectral problem with a fixed, presumably sufficiently fine discretization. Instead, the present approach is based on first contriving iterative schemes, formulated in function space, that are shown to converge at a quantitative rate without assuming any a priori excess regularity properties, and that exploit only properties of the optical parameters in the underlying radiative transfer model. We develop the analytical and numerical tools for approximately realizing each iteration step withing judiciously chosen accuracy tolerances, verified by a posteriori estimates, so as to still warrant quantifiable convergence to the exact eigen-pair. This is carried out in full first for a Newton scheme. Since this is only locally convergent we analyze in addition the convergence of a power iteration in function space to produce sufficiently accurate initial guesses. Here we have to deal with intrinsic difficulties posed by compact but unsymmetric operators preventing standard arguments used in the finite dimensional case. Our main point is that we can avoid any condition on an initial guess to be already in a small neighborhood of the exact solution. We close with a discussion of remaining intrinsic obstructions to a certifiable numerical implementation, mainly related to not knowing the gap between the principal eigenvalue and the next smaller one in modulus.
The last decade has seen many attempts to generalise the definition of modes, or MAP estimators, of a probability distribution $\mu$ on a space $X$ to the case that $\mu$ has no continuous Lebesgue density, and in particular to infinite-dimensional Banach and Hilbert spaces $X$. This paper examines the properties of and connections among these definitions. We construct a systematic taxonomy -- or `periodic table' -- of modes that includes the established notions as well as large hitherto-unexplored classes. We establish implications between these definitions and provide counterexamples to distinguish them. We also distinguish those definitions that are merely `grammatically correct' from those that are `meaningful' in the sense of satisfying certain `common-sense' axioms for a mode, among them the correct handling of discrete measures and those with continuous Lebesgue densities. However, despite there being 17 such `meaningful' definitions of mode, we show that none of them satisfy the `merging property', under which the modes of $\mu|_{A}$, $\mu|_{B}$ and $\mu|_{A \cup B}$ enjoy a straightforward relationship for well-separated positive-mass events $A,B \subseteq X$.
In the literature on nonlinear cointegration, a long-standing open problem relates to how a (nonlinear) vector autoregression, which provides a unified description of the short- and long-run dynamics of a collection of time series, can generate 'nonlinear cointegration' in the profound sense of those series sharing common nonlinear stochastic trends. We consider this problem in the setting of the censored and kinked structural VAR (CKSVAR), which provides a flexible yet tractable framework within which to model time series that are subject to threshold-type nonlinearities, such as those arising due to occasionally binding constraints, of which the zero lower bound (ZLB) on short-term nominal interest rates provides a leading example. We provide a complete characterisation of how common linear and {nonlinear stochastic trends may be generated in this model, via unit roots and appropriate generalisations of the usual rank conditions, providing the first extension to date of the Granger-Johansen representation theorem to a nonlinearly cointegrated setting, and thereby giving the first successful treatment of the open problem. The limiting common trend processes include regulated, censored and kinked Brownian motions, none of which have previously appeared in the literature on cointegrated VARs. Our results and running examples illustrate that the CKSVAR is capable of supporting a far richer variety of long-run behaviour than is a linear VAR, in ways that may be particularly useful for the identification of structural parameters.