Comparing learned neural representations in neural networks is a challenging but important problem, which has been approached in different ways. The Centered Kernel Alignment (CKA) similarity metric, particularly its linear variant, has recently become a popular approach and has been widely used to compare representations of a network's different layers, of architecturally similar networks trained differently, or of models with different architectures trained on the same data. A wide variety of conclusions about similarity and dissimilarity of these various representations have been made using CKA. In this work we present analysis that formally characterizes CKA sensitivity to a large class of simple transformations, which can naturally occur in the context of modern machine learning. This provides a concrete explanation of CKA sensitivity to outliers, which has been observed in past works, and to transformations that preserve the linear separability of the data, an important generalization attribute. We empirically investigate several weaknesses of the CKA similarity metric, demonstrating situations in which it gives unexpected or counter-intuitive results. Finally we study approaches for modifying representations to maintain functional behaviour while changing the CKA value. Our results illustrate that, in many cases, the CKA value can be easily manipulated without substantial changes to the functional behaviour of the models, and call for caution when leveraging activation alignment metrics.
Covariance functions are the core of spatial statistics, stochastic processes, machine learning as well as many other theoretical and applied disciplines. The properties of the covariance function at small and large distances determine the geometric attributes of the associated Gaussian random field. Having covariance functions that allow to specify both local and global properties is certainly on demand. This paper provides a method to find new classes of covariance functions having such properties. We term these models hybrid as they are obtained as scale mixtures of piecewise covariance kernels against measures that are also defined as piecewise linear combination of parametric families of measures. In order to illustrate our methodology, we provide new families of covariance functions that are proved to be richer with respect to other well known families that have been proposed by earlier literature. More precisely, we derive a hybrid Cauchy-Mat\'ern model, which allows us to index both long memory and mean square differentiability of the random field, and a hybrid Hole-Effect-Mat\'ern model, which is capable of attaining negative values (hole effect), while preserving the local attributes of the traditional Mat\'ern model. Our findings are illustrated through numerical studies with both simulated and real data.
Rehearsal approaches in class incremental learning (CIL) suffer from decision boundary overfitting to new classes, which is mainly caused by two factors: insufficiency of old classes data for knowledge distillation and imbalanced data learning between the learned and new classes because of the limited storage memory. In this work, we present a simple but effective approach to tackle these two factors. First, we employ a re-sampling strategy and Mixup K}nowledge D}istillation (Re-MKD) to improve the performances of KD, which would greatly alleviate the overfitting problem. Specifically, we combine mixup and re-sampling strategies to synthesize adequate data used in KD training that are more consistent with the latent distribution between the learned and new classes. Second, we propose a novel incremental influence balance (IIB) method for CIL to tackle the classification of imbalanced data by extending the influence balance method into the CIL setting, which re-weights samples by their influences to create a proper decision boundary. With these two improvements, we present the effective decision boundary learning algorithm (EDBL) which improves the performance of KD and deals with the imbalanced data learning simultaneously. Experiments show that the proposed EDBL achieves state-of-the-art performances on several CIL benchmarks.
Deep Reinforcement Learning (DRL) and Deep Multi-agent Reinforcement Learning (MARL) have achieved significant successes across a wide range of domains, including game AI, autonomous vehicles, robotics, and so on. However, DRL and deep MARL agents are widely known to be sample inefficient that millions of interactions are usually needed even for relatively simple problem settings, thus preventing the wide application and deployment in real-industry scenarios. One bottleneck challenge behind is the well-known exploration problem, i.e., how efficiently exploring the environment and collecting informative experiences that could benefit policy learning towards the optimal ones. This problem becomes more challenging in complex environments with sparse rewards, noisy distractions, long horizons, and non-stationary co-learners. In this paper, we conduct a comprehensive survey on existing exploration methods for both single-agent and multi-agent RL. We start the survey by identifying several key challenges to efficient exploration. Beyond the above two main branches, we also include other notable exploration methods with different ideas and techniques. In addition to algorithmic analysis, we provide a comprehensive and unified empirical comparison of different exploration methods for DRL on a set of commonly used benchmarks. According to our algorithmic and empirical investigation, we finally summarize the open problems of exploration in DRL and deep MARL and point out a few future directions.
Over the past few years, the use of machine learning models has emerged as a generic and powerful means for prediction purposes. At the same time, there is a growing demand for interpretability of prediction models. To determine which features of a dataset are important to predict a target variable $Y$, a Feature Importance (FI) method can be used. By quantifying how important each feature is for predicting $Y$, irrelevant features can be identified and removed, which could increase the speed and accuracy of a model, and moreover, important features can be discovered, which could lead to valuable insights. A major problem with evaluating FI methods, is that the ground truth FI is often unknown. As a consequence, existing FI methods do not give the exact correct FI values. This is one of the many reasons why it can be hard to properly interpret the results of an FI method. Motivated by this, we introduce a new global approach named the Berkelmans-Pries FI method, which is based on a combination of Shapley values and the Berkelmans-Pries dependency function. We prove that our method has many useful properties, and accurately predicts the correct FI values for several cases where the ground truth FI can be derived in an exact manner. We experimentally show for a large collection of FI methods (468) that existing methods do not have the same useful properties. This shows that the Berkelmans-Pries FI method is a highly valuable tool for analyzing datasets with complex interdependencies.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.