亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Categorical probability has recently seen significant advances through the formalism of Markov categories, within which several classical theorems have been proven in entirely abstract categorical terms. Closely related to Markov categories are gs-monoidal categories, also known as CD categories. These omit a condition that implements the normalization of probability. Extending work of Corradini and Gadducci, we construct free gs-monoidal and free Markov categories generated by a collection of morphisms of arbitrary arity and coarity. For free gs-monoidal categories, this comes in the form of an explicit combinatorial description of their morphisms as structured cospans of labeled hypergraphs. These can be thought of as a formalization of gs-monoidal string diagrams ($=$term graphs) as a combinatorial data structure. We formulate the appropriate $2$-categorical universal property based on ideas of Walters and prove that our categories satisfy it. We expect our free categories to be relevant for computer implementations and we also argue that they can be used as statistical causal models generalizing Bayesian networks.

相關內容

Drawing a direct analogy with the well-studied vibration or elastic modes, we introduce an object's fracture modes, which constitute its preferred or most natural ways of breaking. We formulate a sparsified eigenvalue problem, which we solve iteratively to obtain the n lowest-energy modes. These can be precomputed for a given shape to obtain a prefracture pattern that can substitute the state of the art for realtime applications at no runtime cost but significantly greater realism. Furthermore, any realtime impact can be projected onto our modes to obtain impact-dependent fracture patterns without the need for any online crack propagation simulation. We not only introduce this theoretically novel concept, but also show its fundamental and practical superiority in a diverse set of examples and contexts.

Despite the recent success of machine learning algorithms, most of these models still face several drawbacks when considering more complex tasks requiring interaction between different sources, such as multimodal input data and logical time sequence. On the other hand, the biological brain is highly sharpened in this sense, empowered to automatically manage and integrate such a stream of information through millions of years of evolution. In this context, this paper finds inspiration from recent discoveries on cortical circuits in the brain to propose a more biologically plausible self-supervised machine learning approach that combines multimodal information using intra-layer modulations together with canonical correlation analysis (CCA), as well as a memory mechanism to keep track of temporal data, the so-called Canonical Cortical Graph Neural networks. The approach outperformed recent state-of-the-art results considering both better clean audio reconstruction and energy efficiency, described by a reduced and smother neuron firing rate distribution, suggesting the model as a suitable approach for speech enhancement in future audio-visual hearing aid devices.

We consider prediction with expert advice for strongly convex and bounded losses, and investigate trade-offs between regret and "variance" (i.e., squared difference of learner's predictions and best expert predictions). With $K$ experts, the Exponentially Weighted Average (EWA) algorithm is known to achieve $O(\log K)$ regret. We prove that a variant of EWA either achieves a negative regret (i.e., the algorithm outperforms the best expert), or guarantees a $O(\log K)$ bound on both variance and regret. Building on this result, we show several examples of how variance of predictions can be exploited in learning. In the online to batch analysis, we show that a large empirical variance allows to stop the online to batch conversion early and outperform the risk of the best predictor in the class. We also recover the optimal rate of model selection aggregation when we do not consider early stopping. In online prediction with corrupted losses, we show that the effect of corruption on the regret can be compensated by a large variance. In online selective sampling, we design an algorithm that samples less when the variance is large, while guaranteeing the optimal regret bound in expectation. In online learning with abstention, we use a similar term as the variance to derive the first high-probability $O(\log K)$ regret bound in this setting. Finally, we extend our results to the setting of online linear regression.

Emerging quantum algorithms for problems such as element distinctness, subset sum, and closest pair demonstrate computational advantages by relying on abstract data structures. Practically realizing such an algorithm as a program for a quantum computer requires an efficient implementation of the data structure whose operations correspond to unitary operators that manipulate quantum superpositions of data. To correctly operate in superposition, an implementation must satisfy three properties -- reversibility, history independence, and bounded-time execution. Standard implementations, such as representing an abstract set as a hash table, fail these properties, calling for tools to develop specialized implementations. In this work, we present Core Tower, the first language for quantum programming with random-access memory. Core Tower enables the developer to implement data structures as pointer-based, linked data. It features a reversible semantics enabling every valid program to be translated to a unitary quantum circuit. We present Boson, the first memory allocator that supports reversible, history-independent, and constant-time dynamic memory allocation in quantum superposition. We also present Tower, a language for quantum programming with inductive data structures. Tower features a type system that bounds all recursion using classical parameters. Using Tower, we implement Ground, the first quantum library of data structures, including lists, stacks, queues, strings, and sets. We provide the first executable implementation of sets that satisfies all three mandated properties of reversibility, history independence, and bounded-time execution.

This paper introduces two methods of creating differentially private (DP) synthetic data that are now incorporated into the \textit{synthpop} package for \textbf{R}. Both are suitable for synthesising categorical data, or numeric data grouped into categories. Ten data sets with varying characteristics were used to evaluate the methods. Measures of disclosiveness and of utility were defined and calculated The first method is to add DP noise to a cross tabulation of all the variables and create synthetic data by a multinomial sample from the resulting probabilities. While this method certainly reduced disclosure risk, it did not provide synthetic data of adequate quality for any of the data sets. The other method is to create a set of noisy marginal distributions that are made to agree with each other with an iterative proportional fitting algorithm and then to use the fitted probabilities as above. This proved to provide useable synthetic data for most of these data sets at values of the differentially privacy parameter $\epsilon$ as low as 0.5. The relationship between the disclosure risk and $\epsilon$ is illustrated for each of the data sets. Results show how the trade-off between disclosiveness and data utility depend on the characteristics of the data sets.

Partially-supervised instance segmentation is a task which requests segmenting objects from novel unseen categories via learning on limited seen categories with annotated masks thus eliminating demands of heavy annotation burden. The key to addressing this task is to build an effective class-agnostic mask segmentation model. Unlike previous methods that learn such models only on seen categories, in this paper, we propose a new method, named ContrastMask, which learns a mask segmentation model on both seen and unseen categories under a unified pixel-level contrastive learning framework. In this framework, annotated masks of seen categories and pseudo masks of unseen categories serve as a prior for contrastive learning, where features from the mask regions (foreground) are pulled together, and are contrasted against those from the background, and vice versa. Through this framework, feature discrimination between foreground and background is largely improved, facilitating learning of the class-agnostic mask segmentation model. Exhaustive experiments on the COCO dataset demonstrate the superiority of our method, which outperforms previous state-of-the-arts.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司