We address the challenge of quantifying Bayesian uncertainty and incorporating it in offline use cases of finite-state Markov Decision Processes (MDPs) with unknown dynamics. Our approach provides a principled method to disentangle epistemic and aleatoric uncertainty, and a novel technique to find policies that optimise Bayesian posterior expected value without relying on strong assumptions about the MDP's posterior distribution. First, we utilise standard Bayesian reinforcement learning methods to capture the posterior uncertainty in MDP parameters based on available data. We then analytically compute the first two moments of the return distribution across posterior samples and apply the law of total variance to disentangle aleatoric and epistemic uncertainties. To find policies that maximise posterior expected value, we leverage the closed-form expression for value as a function of policy. This allows us to propose a stochastic gradient-based approach for solving the problem. We illustrate the uncertainty quantification and Bayesian posterior value optimisation performance of our agent in simple, interpretable gridworlds and validate it through ground-truth evaluations on synthetic MDPs. Finally, we highlight the real-world impact and computational scalability of our method by applying it to the AI Clinician problem, which recommends treatment for patients in intensive care units and has emerged as a key use case of finite-state MDPs with offline data. We discuss the challenges that arise with Bayesian modelling of larger scale MDPs while demonstrating the potential to apply our methods rooted in Bayesian decision theory into the real world. We make our code available at //github.com/filippovaldettaro/finite-state-mdps .
We propose a method of simulating the human process of foreign accentuation using Generative Spoken Language Model (GSLM) only with native speech corpora. When one listens to spoken words of a foreign language and repeats them, the repeated speech is often with the accent of that listener's L1. This is said to be because the spoken words are mentally represented as a sequence of phonological units of the L1, and those units are used for oral reproduction. We simulate this process by inputting speech of language A into GSLM of language B to add B's accent onto the input speech. The process of running ASR of the L1 for foreign input speech and giving the ASR result to TTS of the L1 can be viewed as a naive implementation of this approach. The results of our experiments show that the synthesized accent of the output speech is highly natural, compared to real samples of A generated by speakers whose L1 is B, and that the degree of accentuation is controllable.
Integrated Sensing and Communications (ISAC) surpasses the conventional frequency-division sensing and communications (FDSAC) in terms of spectrum, energy, and hardware efficiency, with potential for greater enhancement through integration of non-orthogonal multiple access (NOMA). Leveraging these advantages, a multiple-input multiple-output NOMA-ISAC framework is proposed in this paper, in which the technique of signal alignment is adopted. The performance of the proposed framework for both downlink and uplink is analyzed. 1) The downlink ISAC is investigated under three different precoding designs: a sensing-centric (S-C) design, a communications-centric (C-C) design, and a Pareto optimal design. 2) For the uplink case, two scenarios are investigated: a S-C design and a C-C design, which vary based on the order of interference cancellation between the communication and sensing signals. In each of these scenarios, key performance metrics including sensing rate (SR), communication rate (CR), and outage probability are investigated. For a deeper understanding, the asymptotic performance of the system in the high signal-to-noise ratio (SNR) region is also explored, with a focus on the high-SNR slope and diversity order. Finally, the SR-CR rate regions achieved by ISAC and FDSAC are studied. Numerical results reveal that in both downlink and uplink cases, ISAC outperforms FDSAC in terms of sensing and communications performance and is capable of achieving a broader rate region, clearly showcasing its superiority.
Deep Learning (DL) techniques have achieved remarkable successes in recent years. However, their ability to generalize and execute reasoning tasks remains a challenge. A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning. Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task. These methods exhibit superior generalization capacity compared to fully neural architectures. However, they suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima. This paper proposes a simple yet effective method to ameliorate these problems. The key idea involves pretraining a neural model on the downstream task. Then, a NeSy model is trained on the same task via transfer learning, where the weights of the perceptual part are injected from the pretrained network. The key observation of our work is that the neural network fails to generalize only at the level of the symbolic part while being perfectly capable of learning the mapping from perceptions to symbols. We have tested our training strategy on various SOTA NeSy methods and datasets, demonstrating consistent improvements in the aforementioned problems.
Oblivious transfer (OT) is a fundamental primitive for secure two-party computation. It is well known that OT cannot be implemented with information-theoretic security if the two players only have access to noiseless communication channels, even in the quantum case. As a result, weaker variants of OT have been studied. In this work, we rigorously establish the impossibility of cheat-sensitive OT, where a dishonest party can cheat, but risks being detected. We construct a general attack on any quantum protocol that allows the receiver to compute all inputs of the sender and provide an explicit upper bound on the success probability of this attack. This implies that cheat-sensitive quantum Symmetric Private Information Retrieval cannot be implemented with statistical information-theoretic security. Leveraging the techniques devised for our proofs, we provide entropic bounds on primitives needed for secure function evaluation. They imply impossibility results for protocols where the players have access to OT as a resource. This result significantly improves upon existing bounds and yields tight bounds for reductions of 1-out-of-n OT to a resource primitive. Our results hold in particular for transformations between a finite number of primitives and for any error.
Linearized Reed-Solomon (LRS) codes are evaluation codes based on skew polynomials. They achieve the Singleton bound in the sum-rank metric and therefore are known as maximum sum-rank distance (MSRD) codes. In this work, we give necessary and sufficient conditions for the existence of MSRD codes with a support-constrained generator matrix. The conditions on the support constraints are identical to those for MDS codes and MRD codes. The required field size for an $[n,k]_{q^m}$ LRS codes with support-constrained generator matrix is $q\geq \ell+1$ and $m\geq \max_{l\in[\ell]}\{k-1+\log_qk, n_l\}$, where $\ell$ is the number of blocks and $n_l$ is the size of the $l$-th block. The special cases of the result coincide with the known results for Reed-Solomon codes and Gabidulin codes. For the support constraints that do not satisfy the necessary conditions, we derive the maximum sum-rank distance of a code whose generator matrix fulfills the constraints. Such a code can be constructed from a subcode of an LRS code with a sufficiently large field size. Moreover, as an application in network coding, the conditions can be used as constraints in an integer programming problem to design distributed LRS codes for a distributed multi-source network.
Despite the importance of closely monitoring patients in the Intensive Care Unit (ICU), many aspects are still assessed in a limited manner due to the time constraints imposed on healthcare providers. For example, although excessive visitations during rest hours can potentially exacerbate the risk of circadian rhythm disruption and delirium, it is not captured in the ICU. Likewise, while mobility can be an important indicator of recovery or deterioration in ICU patients, it is only captured sporadically or not captured at all. In the past few years, the computer vision field has found application in many domains by reducing the human burden. Using computer vision systems in the ICU can also potentially enable non-existing assessments or enhance the frequency and accuracy of existing assessments while reducing the staff workload. In this study, we leverage a state-of-the-art noninvasive computer vision system based on depth imaging to characterize ICU visitations and patients' mobility. We then examine the relationship between visitation and several patient outcomes, such as pain, acuity, and delirium. We found an association between deteriorating patient acuity and the incidence of delirium with increased visitations. In contrast, self-reported pain, reported using the Defense and Veteran Pain Rating Scale (DVPRS), was correlated with decreased visitations. Our findings highlight the feasibility and potential of using noninvasive autonomous systems to monitor ICU patients.
The Tsetlin Machine (TM) has gained significant attention in Machine Learning (ML). By employing logical fundamentals, it facilitates pattern learning and representation, offering an alternative approach for developing comprehensible Artificial Intelligence (AI) with a specific focus on pattern classification in the form of conjunctive clauses. In the domain of Natural Language Processing (NLP), TM is utilised to construct word embedding and describe target words using clauses. To enhance the descriptive capacity of these clauses, we study the concept of Reasoning by Elimination (RbE) in clauses' formulation, which involves incorporating feature negations to provide a more comprehensive representation. In more detail, this paper employs the Tsetlin Machine Auto-Encoder (TM-AE) architecture to generate dense word vectors, aiming at capturing contextual information by extracting feature-dense vectors for a given vocabulary. Thereafter, the principle of RbE is explored to improve descriptivity and optimise the performance of the TM. Specifically, the specificity parameter s and the voting margin parameter T are leveraged to regulate feature distribution in the state space, resulting in a dense representation of information for each clause. In addition, we investigate the state spaces of TM-AE, especially for the forgotten/excluded features. Empirical investigations on artificially generated data, the IMDB dataset, and the 20 Newsgroups dataset showcase the robustness of the TM, with accuracy reaching 90.62\% for the IMDB.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.