亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Identifying differences between groups is one of the most important knowledge discovery problems. The procedure, also known as contrast sets mining, is applied in a wide range of areas like medicine, industry, or economics. In the paper we present RuleKit-CS, an algorithm for contrast set mining based on separate and conquer - a well established heuristic for decision rule induction. Multiple passes accompanied with an attribute penalization scheme provide contrast sets describing same examples with different attributes, distinguishing presented approach from the standard separate and conquer. The algorithm was also generalized for regression and survival data allowing identification of contrast sets whose label attribute/survival prognosis is consistent with the label/prognosis for the predefined contrast groups. This feature, not provided by the existing approaches, further extends the usability of RuleKit-CS. Experiments on over 130 data sets from various areas and detailed analysis of selected cases confirmed RuleKit-CS to be a useful tool for discovering differences between defined groups. The algorithm was implemented as a part of the RuleKit suite available at GitHub under GNU AGPL 3 licence (//github.com/adaa-polsl/RuleKit). Keywords: contrast sets, separate and conquer, regression, survival

相關內容

In machine learning applications, it is common practice to feed as much information as possible. In most cases, the model can handle large data sets that allow to predict more accurately. In the presence of data scarcity, a Few-Shot learning (FSL) approach aims to build more accurate algorithms with limited training data. We propose a novel end-to-end lightweight architecture that verifies biometric data by producing competitive results as compared to state-of-the-art accuracies through Few-Shot learning methods. The dense layers add to the complexity of state-of-the-art deep learning models which inhibits them to be used in low-power applications. In presented approach, a shallow network is coupled with a conventional machine learning technique that exploits hand-crafted features to verify biometric images from multi-modal sources such as signatures, periocular region, iris, face, fingerprints etc. We introduce a self-estimated threshold that strictly monitors False Acceptance Rate (FAR) while generalizing its results hence eliminating user-defined thresholds from ROC curves that are likely to be biased on local data distribution. This hybrid model benefits from few-shot learning to make up for scarcity of data in biometric use-cases. We have conducted extensive experimentation with commonly used biometric datasets. The obtained results provided an effective solution for biometric verification systems.

Over the years, many subjective and objective quality assessment datasets have been created and made available to the research community. However, there is no standard process for documenting the various aspects of the dataset, such as details about the source sequences, number of test subjects, test methodology, encoding settings, etc. Such information is often of great importance to the users of the dataset as it can help them get a quick understanding of the motivation and scope of the dataset. Without such a template, it is left to each reader to collate the information from the relevant publication or website, which is a tedious and time-consuming process. In some cases, the absence of a template to guide the documentation process can result in an unintentional omission of some important information. This paper addresses this simple but significant gap by proposing a datasheet template for documenting various aspects of subjective and objective quality assessment datasets for multimedia data. The contributions presented in this work aim to simplify the documentation process for existing and new datasets and improve their reproducibility. The proposed datasheet template is available on GitHub, along with a few sample datasheets of a few open-source audiovisual subjective and objective datasets.

In recent years, natural language processing (NLP) has become increasingly important in a variety of business applications, including sentiment analysis, text classification, and named entity recognition. In this paper, we propose an approach for company classification using NLP and zero-shot learning. Our method utilizes pre-trained transformer models to extract features from company descriptions, and then applies zero-shot learning to classify companies into relevant categories without the need for specific training data for each category. We evaluate our approach on publicly available datasets of textual descriptions of companies, and demonstrate that it can streamline the process of company classification, thereby reducing the time and resources required in traditional approaches such as the Global Industry Classification Standard (GICS). The results show that this method has potential for automation of company classification, making it a promising avenue for future research in this area.

In the big data era researchers face a series of problems. Even standard approaches/methodologies, like linear regression, can be difficult or problematic with huge volumes of data. Traditional approaches for regression in big datasets may suffer due to the large sample size, since they involve inverting huge data matrices or even because the data cannot fit to the memory. Proposed approaches are based on selecting representative subdata to run the regression. Existing approaches select the subdata using information criteria and/or properties from orthogonal arrays. In the present paper we improve existing algorithms providing a new algorithm that is based on D-optimality approach. We provide simulation evidence for its performance. Evidence about the parameters of the proposed algorithm is also provided in order to clarify the trade-offs between execution time and information gain. Real data applications are also provided.

Feature selection is one of the most relevant processes in any methodology for creating a statistical learning model. Generally, existing algorithms establish some criterion to select the most influential variables, discarding those that do not contribute any relevant information to the model. This methodology makes sense in a classical static situation where the joint distribution of the data does not vary over time. However, when dealing with real data, it is common to encounter the problem of the dataset shift and, specifically, changes in the relationships between variables (concept shift). In this case, the influence of a variable cannot be the only indicator of its quality as a regressor of the model, since the relationship learned in the traning phase may not correspond to the current situation. Thus, we propose a new feature selection methodology for regression problems that takes this fact into account, using Shapley values to study the effect that each variable has on the predictions. Five examples are analysed: four correspond to typical situations where the method matches the state of the art and one example related to electricity price forecasting where a concept shift phenomenon has occurred in the Iberian market. In this case the proposed algorithm improves the results significantly.

The Naive Bayesian classifier is a popular classification method employing the Bayesian paradigm. The concept of having conditional dependence among input variables sounds good in theory but can lead to a majority vote style behaviour. Achieving conditional independence is often difficult, and they introduce decision biases in the estimates. In Naive Bayes, certain features are called independent features as they have no conditional correlation or dependency when predicting a classification. In this paper, we focus on the optimal partition of features by proposing a novel technique called the Comonotone-Independence Classifier (CIBer) which is able to overcome the challenges posed by the Naive Bayes method. For different datasets, we clearly demonstrate the efficacy of our technique, where we achieve lower error rates and higher or equivalent accuracy compared to models such as Random Forests and XGBoost.

Detection and mitigation of critical web vulnerabilities and attacks like cross-site scripting (XSS), and cross-site request forgery (CSRF) have been a great concern in the field of web security. Such web attacks are evolving and becoming more challenging to detect. Several ideas from different perspectives have been put forth that can be used to improve the performance of detecting these web vulnerabilities and preventing the attacks from happening. Machine learning techniques have lately been used by researchers to defend against XSS and CSRF, and given the positive findings, it can be concluded that it is a promising research direction. The objective of this paper is to briefly report on the research works that have been published in this direction of applying classical and advanced machine learning to identify and prevent XSS and CSRF. The purpose of providing this survey is to address different machine learning approaches that have been implemented, understand the key takeaway of every research, discuss their positive impact and the downsides that persists, so that it can help the researchers to determine the best direction to develop new approaches for their own research and to encourage researchers to focus towards the intersection between web security and machine learning.

Multimodal learning helps to comprehensively understand the world, by integrating different senses. Accordingly, multiple input modalities are expected to boost model performance, but we actually find that they are not fully exploited even when the multimodal model outperforms its uni-modal counterpart. Specifically, in this paper we point out that existing multimodal discriminative models, in which uniform objective is designed for all modalities, could remain under-optimized uni-modal representations, caused by another dominated modality in some scenarios, e.g., sound in blowing wind event, vision in drawing picture event, etc. To alleviate this optimization imbalance, we propose on-the-fly gradient modulation to adaptively control the optimization of each modality, via monitoring the discrepancy of their contribution towards the learning objective. Further, an extra Gaussian noise that changes dynamically is introduced to avoid possible generalization drop caused by gradient modulation. As a result, we achieve considerable improvement over common fusion methods on different multimodal tasks, and this simple strategy can also boost existing multimodal methods, which illustrates its efficacy and versatility. The source code is available at \url{//github.com/GeWu-Lab/OGM-GE_CVPR2022}.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.

北京阿比特科技有限公司