亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The starting point of this paper is a collection of properties of an algorithm that have been distilled from the informal descriptions of what an algorithm is that are given in standard works from the mathematical and computer science literature. Based on that, the notion of a proto-algorithm is introduced. The thought is that algorithms are equivalence classes of proto-algorithms under some equivalence relation. Three equivalence relations are defined. Two of them give bounds between which an appropriate equivalence relation must lie. The third lies in between these two and is likely an appropriate equivalence relation. A sound method is presented to prove, using an imperative process algebra based on ACP, that this equivalence relation holds between two proto-algorithms.

相關內容

In this note we consider the problem of ParaTuck-2 decomposition of a three-way tensor.We provide an algebraic algorithm for finding the ParaTuck-2 decomposition for the case when the ParaTuck-2 ranks are smaller than the frontal dimensions of the tensors.Our approach relies only on linear algebra operations and is based on finding the kernel of a structured matrix constructed from the tensor.

Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed reaction-advection-diffusion (RAD) PDE models that are linear in the unobserved quantities. We show that the differential algebra approach can always, in theory, be applied to such models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease in structural identifiability. We conclude by discussing future possibilities and the computational cost of performing structural identifiability analysis on more general PDE models.

Generally, to apply the MUltiple SIgnal Classification (MUSIC) algorithm for the rapid imaging of small inhomogeneities, the complete elements of the multi-static response (MSR) matrix must be collected. However, in real-world applications such as microwave imaging or bistatic measurement configuration, diagonal elements of the MSR matrix are unknown. Nevertheless, it is possible to obtain imaging results using a traditional approach but theoretical reason of the applicability has not been investigated yet. In this paper, we establish mathematical structures of the imaging function of MUSIC from an MSR matrix without diagonal elements in both transverse magnetic (TM) and transverse electric (TE) polarizations. The established structures demonstrate why the shape of the location of small inhomogeneities can be retrieved via MUSIC without the diagonal elements of the MSR matrix. In addition, they reveal the intrinsic properties of imaging and the fundamental limitations. Results of numerical simulations are also provided to support the identified structures.

Principal component analysis (PCA) is a longstanding and well-studied approach for dimension reduction. It rests upon the assumption that the underlying signal in the data has low rank, and thus can be well-summarized using a small number of dimensions. The output of PCA is typically represented using a scree plot, which displays the proportion of variance explained (PVE) by each principal component. While the PVE is extensively reported in routine data analyses, to the best of our knowledge the notion of inference on the PVE remains unexplored. In this paper, we consider inference on the PVE. We first introduce a new population quantity for the PVE with respect to an unknown matrix mean. Critically, our interest lies in the PVE of the sample principal components (as opposed to unobserved population principal components); thus, the population PVE that we introduce is defined conditional on the sample singular vectors. We show that it is possible to conduct inference, in the sense of confidence intervals, p-values, and point estimates, on this population quantity. Furthermore, we can conduct valid inference on the PVE of a subset of the principal components, even when the subset is selected using a data-driven approach such as the elbow rule. We demonstrate the proposed approach in simulation and in an application to a gene expression dataset.

A family of symmetric matrices $A_1,\ldots, A_d$ is SDC (simultaneous diagonalization by congruence) if there is an invertible matrix $X$ such that every $X^T A_k X$ is diagonal. In this work, a novel randomized SDC (RSDC) algorithm is proposed that reduces SDC to a generalized eigenvalue problem by considering two (random) linear combinations of the family. We establish exact recovery: RSDC achieves diagonalization with probability $1$ if the family is exactly SDC. Under a mild regularity assumption, robust recovery is also established: Given a family that is $\epsilon$-close to SDC then RSDC diagonalizes, with high probability, the family up to an error of norm $\mathcal{O}(\epsilon)$. Under a positive definiteness assumption, which often holds in applications, stronger results are established, including a bound on the condition number of the transformation matrix. For practical use, we suggest to combine RSDC with an optimization algorithm. The performance of the resulting method is verified for synthetic data, image separation and EEG analysis tasks. It turns out that our newly developed method outperforms existing optimization-based methods in terms of efficiency while achieving a comparable level of accuracy.

This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.

Quantum-inspired classical algorithms provide us with a new way to understand the computational power of quantum computers for practically-relevant problems, especially in machine learning. In the past several years, numerous efficient algorithms for various tasks have been found, while an analysis of lower bounds is still missing. Using communication complexity, in this work we propose the first method to study lower bounds for these tasks. We mainly focus on lower bounds for solving linear regressions, supervised clustering, principal component analysis, recommendation systems, and Hamiltonian simulations. More precisely, we show that for linear regressions, in the row-sparse case, the lower bound is quadratic in the Frobenius norm of the underlying matrix, which is tight. In the dense case, with an extra assumption on the accuracy we obtain that the lower bound is quartic in the Frobenius norm, which matches the upper bound. For supervised clustering, we obtain a tight lower bound that is quartic in the Frobenius norm. For the other three tasks, we obtain a lower bound that is quadratic in the Frobenius norm, and the known upper bound is quartic in the Frobenius norm. Through this research, we find that large quantum speedup can exist for sparse, high-rank, well-conditioned matrix-related problems. Finally, we extend our method to study lower bounds analysis of quantum query algorithms for matrix-related problems. Some applications are given.

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司