亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we derive a WKB expansion for the electromagnetic fields solution of the time-harmonic Maxwell equations set in a domain with a thin layer. As a by-product of this expansion we obtain new second order asymptotic models with generalized impedance transmission conditions that turn out to depend on the mean curvature of the boundary of the subdomain surrounded by the thin layer. We show that these models can be easily integrated in finite element methods by developing mixed variational formulations. One application of this work concerns the computation of the electromagnetic field in biological cells.

相關內容

Recently, high dimensional vector auto-regressive models (VAR), have attracted a lot of interest, due to novel applications in the health, engineering and social sciences. The presence of temporal dependence poses additional challenges to the theory of penalized estimation techniques widely used in the analysis of their iid counterparts. However, recent work (e.g., [Basu and Michailidis, 2015, Kock and Callot, 2015]) has established optimal consistency of $\ell_1$-LASSO regularized estimates applied to models involving high dimensional stable, Gaussian processes. The only price paid for temporal dependence is an extra multiplicative factor that equals 1 for independent and identically distributed (iid) data. Further, [Wong et al., 2020] extended these results to heavy tailed VARs that exhibit "$\beta$-mixing" dependence, but the rates rates are sub-optimal, while the extra factor is intractable. This paper improves these results in two important directions: (i) We establish optimal consistency rates and corresponding finite sample bounds for the underlying model parameters that match those for iid data, modulo a price for temporal dependence, that is easy to interpret and equals 1 for iid data. (ii) We incorporate more general penalties in estimation (which are not decomposable unlike the $\ell_1$ norm) to induce general sparsity patterns. The key technical tool employed is a novel, easy-to-use concentration bound for heavy tailed linear processes, that do not rely on "mixing" notions and give tighter bounds.

Conventional multi-user multiple-input multiple-output (MU-MIMO) mainly focused on Gaussian signaling, independent and identically distributed (IID) channels, and a limited number of users. It will be laborious to cope with the heterogeneous requirements in next-generation wireless communications, such as various transmission data, complicated communication scenarios, and massive user access. Therefore, this paper studies a generalized MU-MIMO (GMU-MIMO) system with more practical constraints, i.e., non-Gaussian signaling, non-IID channel, and massive users and antennas. These generalized assumptions bring new challenges in theory and practice. For example, there is no accurate capacity analysis for GMU-MIMO. In addition, it is unclear how to achieve the capacity optimal performance with practical complexity. To address these challenges, a unified framework is proposed to derive the GMU-MIMO capacity and design a capacity optimal transceiver, which jointly considers encoding, modulation, detection, and decoding. Group asymmetry is developed to make a tradeoff between user rate allocation and implementation complexity. Specifically, the capacity region of group asymmetric GMU-MIMO is characterized by using the celebrated mutual information and minimum mean-square error (MMSE) lemma and the MMSE optimality of orthogonal approximate message passing (OAMP)/vector AMP (VAMP). Furthermore, a theoretically optimal multi-user OAMP/VAMP receiver and practical multi-user low-density parity-check (MU-LDPC) codes are proposed to achieve the capacity region of group asymmetric GMU-MIMO. Numerical results verify that the gaps between theoretical detection thresholds of the proposed framework with optimized MU-LDPC codes and QPSK modulation and the sum capacity of GMU-MIMO are about 0.2 dB. Moreover, their finite-length performances are about 1~2 dB away from the associated sum capacity.

For the first time, a nonlinear interface problem on an unbounded domain with nonmonotone set-valued transmission conditions is analyzed. The investigated problem involves a nonlinear monotone partial differential equation in the interior domain and the Laplacian in the exterior domain. Such a scalar interface problem models nonmonotone frictional contact of elastic infinite media. The variational formulation of the interface problem leads to a hemivariational inequality, which lives on the unbounded domain, and so cannot be treated numerically in a direct way. By boundary integral methods the problem is transformed and a novel hemivariational inequality (HVI) is obtained that lives on the interior domain and on the coupling boundary, only. Thus for discretization the coupling of finite elements and boundary elements is the method of choice. In addition smoothing techniques of nondifferentiable optimization are adapted and the nonsmooth part in the HVI is regularized. Thus we reduce the original variational problem to a finite dimensional problem that can be solved by standard optimization tools. We establish not only convergence results for the total approximation procedure, but also an asymptotic error estimate for the regularized HVI.

This work considers Gaussian process interpolation with a periodized version of the Mat{\'e}rn covariance function (Stein, 1999, Section 6.7) with Fourier coefficients $\phi$($\alpha$^2 + j^2)^(--$\nu$--1/2). Convergence rates are studied for the joint maximum likelihood estimation of $\nu$ and $\phi$ when the data is sampled according to the model. The mean integrated squared error is also analyzed with fixed and estimated parameters, showing that maximum likelihood estimation yields asymptotically the same error as if the ground truth was known. Finally, the case where the observed function is a ''deterministic'' element of a continuous Sobolev space is also considered, suggesting that bounding assumptions on some parameters can lead to different estimates.

The weakly compressible smoothed particle hydrodynamics (WCSPH) method has been employed to simulate various physical phenomena involving fluids and solids. Various methods have been proposed to implement the solid wall, and inlet/outlet and other boundary conditions. However, error estimation and the formal rates of convergence for these methods have not been discussed or examined carefully. In this paper, we use the method of manufactured solution (MMS) to verify the convergence properties of a variety of commonly employed of various solid, inlet, and outlet boundary implementations. In order to perform this study, we propose various manufactured solutions for different domains. On the basis of the convergence offered by these methods, we systematically propose a convergent WCSPH scheme along with suitable methods for implementing the boundary conditions. Along with other recent developments in the use of adaptive resolution, this paves the way for accurate and efficient simulation of incompressible or weakly-compressible fluid flows using the SPH method.

Reconfigurable intelligent surfaces (RISs) are envisioned to be a disruptive wireless communication technique that is capable of reconfiguring the wireless propagation environment. In this paper, we study a free-space RIS-assisted multiple-input single-output (MISO) communication system in far-field operation. To maximize the received power from the physical and electromagnetic nature point of view, a comprehensive optimization, including beamforming of the transmitter, phase shifts of the RIS, orientation and position of the RIS is formulated and addressed. After exploiting the property of line-of-sight (LoS) links, we derive closed-form solutions of beamforming and phase shifts. For the non-trivial RIS position optimization problem in arbitrary three-dimensional space, a dimensional-reducing theory is proved. The simulation results show that the proposed closed-form beamforming and phase shifts approach the upper bound of the received power. The robustness of our proposed solutions in terms of the perturbation is also verified. Moreover, the RIS significantly enhances the performance of the mmWave/THz communication system.

The weakly compressible smoothed particle hydrodynamics (WCSPH) method has been employed to simulate various physical phenomena involving fluids and solids. Various methods have been proposed to implement the solid wall, and inlet/outlet and other boundary conditions. However, error estimation and the formal rates of convergence for these methods have not been discussed or examined carefully. In this paper, we use the method of manufactured solution (MMS) to verify the convergence properties of a variety of commonly employed of various solid, inlet, and outlet boundary implementations. In order to perform this study, we propose various manufactured solutions for different domains. On the basis of the convergence offered by these methods, we systematically propose a convergent WCSPH scheme along with suitable methods for implementing the boundary conditions. Along with other recent developments in the use of adaptive resolution, this paves the way for accurate and efficient simulation of incompressible or weakly-compressible fluid flows using the SPH method.

Many modern data analytics applications on graphs operate on domains where graph topology is not known a priori, and hence its determination becomes part of the problem definition, rather than serving as prior knowledge which aids the problem solution. Part III of this monograph starts by addressing ways to learn graph topology, from the case where the physics of the problem already suggest a possible topology, through to most general cases where the graph topology is learned from the data. A particular emphasis is on graph topology definition based on the correlation and precision matrices of the observed data, combined with additional prior knowledge and structural conditions, such as the smoothness or sparsity of graph connections. For learning sparse graphs (with small number of edges), the least absolute shrinkage and selection operator, known as LASSO is employed, along with its graph specific variant, graphical LASSO. For completeness, both variants of LASSO are derived in an intuitive way, and explained. An in-depth elaboration of the graph topology learning paradigm is provided through several examples on physically well defined graphs, such as electric circuits, linear heat transfer, social and computer networks, and spring-mass systems. As many graph neural networks (GNN) and convolutional graph networks (GCN) are emerging, we have also reviewed the main trends in GNNs and GCNs, from the perspective of graph signal filtering. Tensor representation of lattice-structured graphs is next considered, and it is shown that tensors (multidimensional data arrays) are a special class of graph signals, whereby the graph vertices reside on a high-dimensional regular lattice structure. This part of monograph concludes with two emerging applications in financial data processing and underground transportation networks modeling.

The focus of Part I of this monograph has been on both the fundamental properties, graph topologies, and spectral representations of graphs. Part II embarks on these concepts to address the algorithmic and practical issues centered round data/signal processing on graphs, that is, the focus is on the analysis and estimation of both deterministic and random data on graphs. The fundamental ideas related to graph signals are introduced through a simple and intuitive, yet illustrative and general enough case study of multisensor temperature field estimation. The concept of systems on graph is defined using graph signal shift operators, which generalize the corresponding principles from traditional learning systems. At the core of the spectral domain representation of graph signals and systems is the Graph Discrete Fourier Transform (GDFT). The spectral domain representations are then used as the basis to introduce graph signal filtering concepts and address their design, including Chebyshev polynomial approximation series. Ideas related to the sampling of graph signals are presented and further linked with compressive sensing. Localized graph signal analysis in the joint vertex-spectral domain is referred to as the vertex-frequency analysis, since it can be considered as an extension of classical time-frequency analysis to the graph domain of a signal. Important topics related to the local graph Fourier transform (LGFT) are covered, together with its various forms including the graph spectral and vertex domain windows and the inversion conditions and relations. A link between the LGFT with spectral varying window and the spectral graph wavelet transform (SGWT) is also established. Realizations of the LGFT and SGWT using polynomial (Chebyshev) approximations of the spectral functions are further considered. Finally, energy versions of the vertex-frequency representations are introduced.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司