亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the XPER (eXplainable PERformance) methodology to measure the specific contribution of the input features to the predictive or economic performance of a model. Our methodology offers several advantages. First, it is both model-agnostic and performance metric-agnostic. Second, XPER is theoretically founded as it is based on Shapley values. Third, the interpretation of the benchmark, which is inherent in any Shapley value decomposition, is meaningful in our context. Fourth, XPER is not plagued by model specification error, as it does not require re-estimating the model. Fifth, it can be implemented either at the model level or at the individual level. In an application based on auto loans, we find that performance can be explained by a surprisingly small number of features. XPER decompositions are rather stable across metrics, yet some feature contributions switch sign across metrics. Our analysis also shows that explaining model forecasts and model performance are two distinct tasks.

相關內容

Explainable machine learning provides tools to better understand predictive models and their decisions, but many such methods are limited to producing insights with respect to a single class. When generating explanations for several classes, reasoning over them to obtain a complete view may be difficult since they can present competing or contradictory evidence. To address this issue we introduce a novel paradigm of multi-class explanations. We outline the theory behind such techniques and propose a local surrogate model based on multi-output regression trees -- called LIMEtree -- which offers faithful and consistent explanations of multiple classes for individual predictions while being post-hoc, model-agnostic and data-universal. In addition to strong fidelity guarantees, our implementation supports (interactive) customisation of the explanatory insights and delivers a range of diverse explanation types, including counterfactual statements favoured in the literature. We evaluate our algorithm with a collection of quantitative experiments, a qualitative analysis based on explainability desiderata and a preliminary user study on an image classification task, comparing it to LIME. Our contributions demonstrate the benefits of multi-class explanations and wide-ranging advantages of our method across a diverse set scenarios.

The applications of Artificial Intelligence (AI) methods especially machine learning techniques have increased in recent years. Classification algorithms have been successfully applied to different problems such as requirement classification. Although these algorithms have good performance, most of them cannot explain how they make a decision. Explainable Artificial Intelligence (XAI) is a set of new techniques that explain the predictions of machine learning algorithms. In this work, the applicability of XAI for software requirement classification is studied. An explainable software requirement classifier is presented using the LIME algorithm. The explainability of the proposed method is studied by applying it to the PROMISE software requirement dataset. The results show that XAI can help the analyst or requirement specifier to better understand why a specific requirement is classified as functional or non-functional. The important keywords for such decisions are identified and analyzed in detail. The experimental study shows that the XAI can be used to help analysts and requirement specifiers to better understand the predictions of the classifiers for categorizing software requirements. Also, the effect of the XAI on feature reduction is analyzed. The results showed that the XAI model has a positive role in feature analysis.

Artificial intelligence (AI) systems utilizing deep neural networks (DNNs) and machine learning (ML) algorithms are widely used for solving important problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNNs or ML models, which are often perceived as opaque and black-box, can make it difficult to understand the reasoning behind their decisions. This lack of transparency can be a challenge for both end-users and decision-makers, as well as AI developers. Additionally, in sensitive areas like healthcare, explainability and accountability are not only desirable but also legally required for AI systems that can have a significant impact on human lives. Fairness is another growing concern, as algorithmic decisions should not show bias or discrimination towards certain groups or individuals based on sensitive attributes. Explainable artificial intelligence (XAI) aims to overcome the opaqueness of black-box models and provide transparency in how AI systems make decisions. Interpretable ML models can explain how they make predictions and the factors that influence their outcomes. However, most state-of-the-art interpretable ML methods are domain-agnostic and evolved from fields like computer vision, automated reasoning, or statistics, making direct application to bioinformatics problems challenging without customization and domain-specific adaptation. In this paper, we discuss the importance of explainability in the context of bioinformatics, provide an overview of model-specific and model-agnostic interpretable ML methods and tools, and outline their potential caveats and drawbacks. Besides, we discuss how to customize existing interpretable ML methods for bioinformatics problems. Nevertheless, we demonstrate how XAI methods can improve transparency through case studies in bioimaging, cancer genomics, and text mining.

The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

北京阿比特科技有限公司