In this paper, we aim to build a novel bandits algorithm that is capable of fully harnessing the power of multi-dimensional data and the inherent non-linearity of reward functions to provide high-usable and accountable decision-making services. To this end, we introduce a generalized low-rank tensor contextual bandits model in which an action is formed from three feature vectors, and thus can be represented by a tensor. In this formulation, the reward is determined through a generalized linear function applied to the inner product of the action's feature tensor and a fixed but unknown parameter tensor with a low tubal rank. To effectively achieve the trade-off between exploration and exploitation, we introduce a novel algorithm called "Generalized Low-Rank Tensor Exploration Subspace then Refine" (G-LowTESTR). This algorithm first collects raw data to explore the intrinsic low-rank tensor subspace information embedded in the decision-making scenario, and then converts the original problem into an almost lower-dimensional generalized linear contextual bandits problem. Rigorous theoretical analysis shows that the regret bound of G-LowTESTR is superior to those in vectorization and matricization cases. We conduct a series of simulations and real data experiments to further highlight the effectiveness of G-LowTESTR, leveraging its ability to capitalize on the low-rank tensor structure for enhanced learning.
In this paper, we propose a neural articulation-to-speech (ATS) framework that synthesizes high-quality speech from articulatory signal in a multi-speaker situation. Most conventional ATS approaches only focus on modeling contextual information of speech from a single speaker's articulatory features. To explicitly represent each speaker's speaking style as well as the contextual information, our proposed model estimates style embeddings, guided from the essential speech style attributes such as pitch and energy. We adopt convolutional layers and transformer-based attention layers for our model to fully utilize both local and global information of articulatory signals, measured by electromagnetic articulography (EMA). Our model significantly improves the quality of synthesized speech compared to the baseline in terms of objective and subjective measurements in the Haskins dataset.
Through this paper, we introduce a novel driver cognitive load assessment dataset, CL-Drive, which contains Electroencephalogram (EEG) signals along with other physiological signals such as Electrocardiography (ECG) and Electrodermal Activity (EDA) as well as eye tracking data. The data was collected from 21 subjects while driving in an immersive vehicle simulator, in various driving conditions, to induce different levels of cognitive load in the subjects. The tasks consisted of 9 complexity levels for 3 minutes each. Each driver reported their subjective cognitive load every 10 seconds throughout the experiment. The dataset contains the subjective cognitive load recorded as ground truth. In this paper, we also provide benchmark classification results for different machine learning and deep learning models for both binary and ternary label distributions. We followed 2 evaluation criteria namely 10-fold and leave-one-subject-out (LOSO). We have trained our models on both hand-crafted features as well as on raw data.
We fit the exponent of the Pareto distribution, that is equivalent or can approximate the continuous power law distribution given a cutoff point, using linear regression (LR). We use LR on the logged variables of the empirical tail (one minus the empirical cumulative distribution function). We find the distribution of the consistent LR estimator and an approximate sigmoid relationship of the mean that underestimates the exponent. By factoring out a sigmoid function used to approximate the mean we transform the LR estimator so it is approximately unbiased with variance comparable to the minimum variance unbiased transformed MLE estimator.
In this paper, we explore a practical system setting where a rack-aware storage system consists of racks, each containing a few parity checks, referred to as a rack-aware system with locality. To minimize cross-rack bandwidth in this system, we organize the repair sets of locally repairable codes into racks and investigate the problem of repairing erasures in locally repairable codes beyond the code locality. We devise two repair schemes to reduce the repair bandwidth for Tamo-Barg codes under the rack-aware model by setting each repair set as a rack. We then establish a cut-set bound for locally repairable codes under the rack-aware model with locality. Using this bound we show that our second repair scheme is optimal. Furthermore, we consider the partial-repair problem for locally repairable codes under the rack-aware model with locality, and introduce both repair schemes and bounds for this scenario.
In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.
Leveraging vast and continually updated knowledge from the Internet has been considered an important ability for a dialogue system. Therefore, the dialogue query generation task is proposed for generating search queries from dialogue histories, which will be submitted to a search engine for retrieving relevant websites on the Internet. In this regard, previous efforts were devoted to collecting conversations with annotated queries and training a query producer (QP) via standard supervised learning. However, these studies still face the challenges of data scarcity and domain adaptation. To address these issues, in this paper, we propose a semi-supervised learning framework -- SemiDQG, to improve model performance with unlabeled conversations. Based on the observation that the search query is typically related to the topic of dialogue response, we train a response-augmented query producer (RA) to provide rich and effective training signals for QP. We first apply a similarity-based query selection strategy to select high-quality RA-generated pseudo queries, which are used to construct pseudo instances for training QP and RA. Then, we adopt the REINFORCE algorithm to further enhance QP, with RA-provided rewards as fine-grained training signals. Experimental results and in-depth analysis of three benchmarks show the effectiveness of our framework in cross-domain and low-resource scenarios. Particularly, SemiDQG significantly surpasses ChatGPT and competitive baselines. Our code is available at \url{//github.com/DeepLearnXMU/SemiDQG}.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.
The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.