Large language models have repeatedly shown outstanding performance across diverse applications. However, deploying these models can inadvertently risk user privacy. The significant memory demands during training pose a major challenge in terms of resource consumption. This substantial size places a heavy load on memory resources, raising considerable practical concerns. In this paper, we introduce DP-MemArc, a novel training framework aimed at reducing the memory costs of large language models while emphasizing the protection of user data privacy. DP-MemArc incorporates side network or reversible network designs to support a variety of differential privacy memory-efficient fine-tuning schemes. Our approach not only achieves in memory optimization but also ensures robust privacy protection, keeping user data secure and confidential. Extensive experiments have demonstrated that DP-MemArc effectively provides differential privacy-efficient fine-tuning across different task scenarios.
Large language models (LLMs) have shown remarkable advances in supporting long-context comprehension and processing tasks. However, scaling the generation inference of LLMs to such long contexts incurs significant additional computation load, and demands a substantial GPU memory footprint to maintain the key-value (KV) cache of transformer-based LLMs. Existing KV cache compression methods, such as quantization, face memory bottlenecks as context length increases, while static-sized caches, such as eviction, suffer from inefficient policies. These limitations restrict deployment on consumer-grade devices like a single Nvidia 4090 GPU. To overcome this, we propose Locret, a framework for long-context LLM inference that introduces retaining heads to evaluate the causal importance of KV cache units, allowing for more accurate eviction within a fixed cache size. Locret is fine-tuned on top of the frozen backbone LLM using a minimal amount of data from standard long-context SFT datasets. During inference, we evict low-importance cache units along with a chunked prefill pattern, significantly reducing peak GPU memory usage. We conduct an extensive empirical study to evaluate Locret, where the experimental results show that Locret outperforms the recent competitive approaches, including InfLLM, Quantization, SirLLM, and MInference, in terms of memory efficiency and the quality of generated contents -- Locret achieves over a 20x and 8x KV cache compression ratio compared to the full KV cache for Phi-3-mini-128K and Llama-3.1-8B-instruct. Additionally, Locret can be combined with other methods, such as quantization and token merging. To our knowledge, Locret is the first framework capable of deploying Llama-3.1-8B or similar models on a single Nvidia 4090 GPU, enabling 128K long-context inference without compromising generation quality, and requiring little additional system optimizations.
Large language models (LLMs) have shown remarkable capabilities in natural language processing; however, they still face difficulties when tasked with understanding lengthy contexts and executing effective question answering. These challenges often arise due to the complexity and ambiguity present in longer texts. To enhance the performance of LLMs in such scenarios, we introduce the Long Question Coreference Adaptation (LQCA) method. This innovative framework focuses on coreference resolution tailored to long contexts, allowing the model to identify and manage references effectively. The LQCA method encompasses four key steps: resolving coreferences within sub-documents, computing the distances between mentions, defining a representative mention for coreference, and answering questions through mention replacement. By processing information systematically, the framework provides easier-to-handle partitions for LLMs, promoting better understanding. Experimental evaluations on a range of LLMs and datasets have yielded positive results, with a notable improvements on OpenAI-o1-mini and GPT-4o models, highlighting the effectiveness of leveraging coreference resolution to bridge context gaps in question answering.
Many applications are leveraging large language models (LLMs) for complex tasks, and they generally demand low inference latency and high serving throughput for interactive online jobs such as chatbots. However, the tight latency requirement and high load variance of applications pose challenges to serving systems in achieving high GPU utilization. Due to the high costs of scheduling and preemption, today's systems generally use separate clusters to serve online and offline inference tasks, and dedicate GPUs for online inferences to avoid interference. This approach leads to underutilized GPUs because one must reserve enough GPU resources for the peak expected load, even if the average load is low. This paper proposes to harvest stranded GPU resources for offline LLM inference tasks such as document summarization and LLM benchmarking. Unlike online inferences, these tasks usually run in a batch-processing manner with loose latency requirements, making them a good fit for stranded resources that are only available shortly. To enable safe and efficient GPU harvesting without interfering with online tasks, we built ConServe, an LLM serving system that contains (1) an execution engine that preempts running offline tasks upon the arrival of online tasks, (2) an incremental checkpointing mechanism that minimizes the amount of recomputation required by preemptions, and (3) a scheduler that adaptively batches offline tasks for higher GPU utilization. Our evaluation demonstrates that ConServe achieves strong performance isolation when co-serving online and offline tasks but at a much higher GPU utilization. When colocating practical online and offline workloads on popular models such as Llama-2-7B, ConServe achieves 2.35$\times$ higher throughput than state-of-the-art online serving systems and reduces serving latency by 84$\times$ compared to existing co-serving systems.
Large language models (LLMs) have shown significant potential in guiding embodied agents to execute language instructions across a range of tasks, including robotic manipulation and navigation. However, existing methods are primarily designed for static environments and do not leverage the agent's own experiences to refine its initial plans. Given that real-world environments are inherently stochastic, initial plans based solely on LLMs' general knowledge may fail to achieve their objectives, unlike in static scenarios. To address this limitation, this study introduces the Experience-and-Emotion Map (E2Map), which integrates not only LLM knowledge but also the agent's real-world experiences, drawing inspiration from human emotional responses. The proposed methodology enables one-shot behavior adjustments by updating the E2Map based on the agent's experiences. Our evaluation in stochastic navigation environments, including both simulations and real-world scenarios, demonstrates that the proposed method significantly enhances performance in stochastic environments compared to existing LLM-based approaches. Code and supplementary materials are available at //e2map.github.io/.
Large language models (LLMs) have exhibited impressive abilities for multimodal content comprehension and reasoning with proper prompting in zero- or few-shot settings. Despite the proliferation of interactive systems developed to support prompt engineering for LLMs across various tasks, most have primarily focused on textual or visual inputs, thus neglecting the complex interplay between modalities within multimodal inputs. This oversight hinders the development of effective prompts that guide model multimodal reasoning processes by fully exploiting the rich context provided by multiple modalities. In this paper, we present POEM, a visual analytics system to facilitate efficient prompt engineering for enhancing the multimodal reasoning performance of LLMs. The system enables users to explore the interaction patterns across modalities at varying levels of detail for a comprehensive understanding of the multimodal knowledge elicited by various prompts. Through diverse recommendations of demonstration examples and instructional principles, POEM supports users in iteratively crafting and refining prompts to better align and enhance model knowledge with human insights. The effectiveness and efficiency of our system are validated through two case studies and interviews with experts.
Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at \url{//github.com/CSHaitao/LexEval} and will be continuously updated.
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.