亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent dramatic advances in artificial intelligence indicate that in the coming years, humanity may irreversibly cross a threshold by creating superhuman general-purpose AI: AI that is better than humans at cognitive tasks in general in the way that AI is currently unbeatable in certain domains. This would upend core aspects of human society, present many unprecedented risks, and is likely to be uncontrollable in several senses. We can choose to not do so, starting by instituting hard limits - placed at the national and international level, and verified by hardware security measures - on the computation that can be used to train and run neural networks. With these limits in place, AI research and industry can focus on making both narrow and general-purpose AI that humans can understand and control, and from which we can reap enormous benefit.

相關內容

人工智能雜志AI(Artificial Intelligence)是目前公認的發表該領域最新研究成果的主要國際論壇。該期刊歡迎有關AI廣泛方面的論文,這些論文構成了整個領域的進步,也歡迎介紹人工智能應用的論文,但重點應該放在新的和新穎的人工智能方法如何提高應用領域的性能,而不是介紹傳統人工智能方法的另一個應用。關于應用的論文應該描述一個原則性的解決方案,強調其新穎性,并對正在開發的人工智能技術進行深入的評估。 官網地址:

Language models, especially pre-trained large language models, have showcased remarkable abilities as few-shot in-context learners (ICL), adept at adapting to new tasks with just a few demonstrations in the input context. However, the model's ability to perform ICL is sensitive to the choice of the few-shot demonstrations. Instead of using a fixed set of demonstrations, one recent development is to retrieve demonstrations tailored to each input query. The implementation of demonstration retrieval is relatively straightforward, leveraging existing databases and retrieval systems. This not only improves the efficiency and scalability of the learning process but also has been shown to reduce biases inherent in manual example selection. In light of the encouraging results and growing research in ICL with retrieved demonstrations, we conduct an extensive review of studies in this area. In this survey, we discuss and compare different design choices for retrieval models, retrieval training procedures, and inference algorithms.

The anthropocentric cultural idea that humans are active agents exerting control over their environments has been largely normalized and inscribed in practices, policies, and products of contemporary industrialized societies. This view underlies a human-ecology relationship based on resource and knowledge extraction. To create a more sustainable and equitable future, it is essential to consider alternative cultural ideas rooted in ecological thinking. This perspective underscores the interconnectedness between humans and more-than-human worlds. We propose a path to reshape the human-ecology relationship by advocating for alternative human-AI interactions. In this paper, we undertake a critical comparison between anthropocentrism and ecological thinking, using storytelling to illustrate various human-AI interactions that embody ecological thinking. We also delineate a set of design principles aimed at guiding AI developments toward fostering a more caring human-ecology relationship.

The academic intelligence of large language models (LLMs) has made remarkable progress in recent times, but their social intelligence performance remains unclear. Inspired by established human social intelligence frameworks, particularly Daniel Goleman's social intelligence theory, we have developed a standardized social intelligence test based on real-world social scenarios to comprehensively assess the social intelligence of LLMs, termed as the Situational Evaluation of Social Intelligence (SESI). We conducted an extensive evaluation with 13 recent popular and state-of-art LLM agents on SESI. The results indicate the social intelligence of LLMs still has significant room for improvement, with superficially friendliness as a primary reason for errors. Moreover, there exists a relatively low correlation between the social intelligence and academic intelligence exhibited by LLMs, suggesting that social intelligence is distinct from academic intelligence for LLMs. Additionally, while it is observed that LLMs can't ``understand'' what social intelligence is, their social intelligence, similar to that of humans, is influenced by social factors.

Nowadays human interactions largely take place on social networks, with online users' behavior often falling into a few general typologies or "social roles". Among these, opinion leaders are of crucial importance as they have the ability to spread an idea or opinion on a large scale across the network, with possible tangible consequences in the real world. In this work we extract and characterize the different social roles of users within the Reddit WallStreetBets community, around the time of the GameStop short squeeze of January 2021 -- when a handful of committed users led the whole community to engage in a large and risky financial operation. We identify the profiles of both average users and of relevant outliers, including opinion leaders, using an iterative, semi-supervised classification algorithm, which allows us to discern the characteristics needed to play a particular social role. The key features of opinion leaders are large risky investments and constant updates on a single stock, which allowed them to attract a large following and, in the case of GameStop, ignite the interest of the community. Finally, we observe a substantial change in the behavior and attitude of users after the short squeeze event: no new opinion leaders are found and the community becomes less focused on investments. Overall, this work sheds light on the users' roles and dynamics that led to the GameStop short squeeze, while also suggesting why WallStreetBets no longer wielded such large influence on financial markets, in the aftermath of this event.

We investigate personalizing the explanations that an Intelligent Tutoring System generates to justify the hints it provides to students to foster their learning. The personalization targets students with low levels of two traits, Need for Cognition and Conscientiousness, and aims to enhance these students' engagement with the explanations, based on prior findings that these students do not naturally engage with the explanations but they would benefit from them if they do. To evaluate the effectiveness of the personalization, we conducted a user study where we found that our proposed personalization significantly increases our target users' interaction with the hint explanations, their understanding of the hints and their learning. Hence, this work provides valuable insights into effectively personalizing AI-driven explanations for cognitively demanding tasks such as learning.

Human decision-making in real-life deviates significantly from the optimal decisions made by fully rational agents, primarily due to computational limitations or psychological biases. While existing studies in behavioral finance have discovered various aspects of human sub-rationality, there lacks a comprehensive framework to transfer these findings into an adaptive human model applicable across diverse financial market scenarios. In this study, we introduce a flexible model that incorporates five different aspects of human sub-rationality using reinforcement learning. Our model is trained using a high-fidelity multi-agent market simulator, which overcomes limitations associated with the scarcity of labeled data of individual investors. We evaluate the behavior of sub-rational human investors using hand-crafted market scenarios and SHAP value analysis, showing that our model accurately reproduces the observations in the previous studies and reveals insights of the driving factors of human behavior. Finally, we explore the impact of sub-rationality on the investor's Profit and Loss (PnL) and market quality. Our experiments reveal that bounded-rational and prospect-biased human behaviors improve liquidity but diminish price efficiency, whereas human behavior influenced by myopia, optimism, and pessimism reduces market liquidity.

Changes in the timescales at which complex systems evolve are essential to predicting critical transitions and catastrophic failures. Disentangling the timescales of the dynamics governing complex systems remains a key challenge. With this study, we introduce an integrated Bayesian framework based on temporal network models to address this challenge. We focus on two methodologies: change point detection for identifying shifts in system dynamics, and a spectrum analysis for inferring the distribution of timescales. Applied to synthetic and empirical datasets, these methologies robustly identify critical transitions and comprehensively map the dominant and subsidiaries timescales in complex systems. This dual approach offers a powerful tool for analyzing temporal networks, significantly enhancing our understanding of dynamic behaviors in complex systems.

Recommendation algorithms play a pivotal role in shaping our media choices, which makes it crucial to comprehend their long-term impact on user behavior. These algorithms are often linked to two critical outcomes: homogenization, wherein users consume similar content despite disparate underlying preferences, and the filter bubble effect, wherein individuals with differing preferences only consume content aligned with their preferences (without much overlap with other users). Prior research assumes a trade-off between homogenization and filter bubble effects and then shows that personalized recommendations mitigate filter bubbles by fostering homogenization. However, because of this assumption of a tradeoff between these two effects, prior work cannot develop a more nuanced view of how recommendation systems may independently impact homogenization and filter bubble effects. We develop a more refined definition of homogenization and the filter bubble effect by decomposing them into two key metrics: how different the average consumption is between users (inter-user diversity) and how varied an individual's consumption is (intra-user diversity). We then use a novel agent-based simulation framework that enables a holistic view of the impact of recommendation systems on homogenization and filter bubble effects. Our simulations show that traditional recommendation algorithms (based on past behavior) mainly reduce filter bubbles by affecting inter-user diversity without significantly impacting intra-user diversity. Building on these findings, we introduce two new recommendation algorithms that take a more nuanced approach by accounting for both types of diversity.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

北京阿比特科技有限公司