亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the stationary (late-time) training regime of single- and two-layer linear underparameterized neural networks within the continuum limit of stochastic gradient descent (SGD) for synthetic Gaussian data. In the case of a single-layer network in the weakly underparameterized regime, the spectrum of the noise covariance matrix deviates notably from the Hessian, which can be attributed to the broken detailed balance of SGD dynamics. The weight fluctuations are in this case generally anisotropic, but are subject to an isotropic loss. For a two-layer network, we obtain the stochastic dynamics of the weights in each layer and analyze the associated stationary covariances. We identify the inter-layer coupling as a new source of anisotropy for the weight fluctuations. In contrast to the single-layer case, the weight fluctuations experience an anisotropic loss, the flatness of which is inversely related to the fluctuation variance. We thereby provide an analytical derivation of the recently observed inverse variance-flatness relation in a model of a deep linear neural network.

相關內容

The main challenge of large-scale numerical simulation of radiation transport is the high memory and computation time requirements of discretization methods for kinetic equations. In this work, we derive and investigate a neural network-based approximation to the entropy closure method to accurately compute the solution of the multi-dimensional moment system with a low memory footprint and competitive computational time. We extend methods developed for the standard entropy-based closure to the context of regularized entropy-based closures. The main idea is to interpret structure-preserving neural network approximations of the regularized entropy closure as a two-stage approximation to the original entropy closure. We conduct a numerical analysis of this approximation and investigate optimal parameter choices. Our numerical experiments demonstrate that the method has a much lower memory footprint than traditional methods with competitive computation times and simulation accuracy. The code and all trained networks are provided on GitHub //github.com/ScSteffen/neuralEntropyClosures and //github.com/CSMMLab/KiT-RT.

A neural architecture with randomly initialized weights, in the infinite width limit, is equivalent to a Gaussian Random Field whose covariance function is the so-called Neural Network Gaussian Process kernel (NNGP). We prove that a reproducing kernel Hilbert space (RKHS) defined by the NNGP contains only functions that can be approximated by the architecture. To achieve a certain approximation error the required number of neurons in each layer is defined by the RKHS norm of the target function. Moreover, the approximation can be constructed from a supervised dataset by a random multi-layer representation of an input vector, together with training of the last layer's weights. For a 2-layer NN and a domain equal to an $n-1$-dimensional sphere in ${\mathbb R}^n$, we compare the number of neurons required by Barron's theorem and by the multi-layer features construction. We show that if eigenvalues of the integral operator of the NNGP decay slower than $k^{-n-\frac{2}{3}}$ where $k$ is an order of an eigenvalue, then our theorem guarantees a more succinct neural network approximation than Barron's theorem. We also make some computational experiments to verify our theoretical findings. Our experiments show that realistic neural networks easily learn target functions even when both theorems do not give any guarantees.

Twin nodes in a static network capture the idea of being substitutes for each other for maintaining paths of the same length anywhere in the network. In dynamic networks, we model twin nodes over a time-bounded interval, noted $(\Delta,d)$-twins, as follows. A periodic undirected time-varying graph $\mathcal G=(G_t)_{t\in\mathbb N}$ of period $p$ is an infinite sequence of static graphs where $G_t=G_{t+p}$ for every $t\in\mathbb N$. For $\Delta$ and $d$ two integers, two distinct nodes $u$ and $v$ in $\mathcal G$ are $(\Delta,d)$-twins if, starting at some instant, the outside neighbourhoods of $u$ and $v$ has non-empty intersection and differ by at most $d$ elements for $\Delta$ consecutive instants. In particular when $d=0$, $u$ and $v$ can act during the $\Delta$ instants as substitutes for each other in order to maintain journeys of the same length in time-varying graph $\mathcal G$. We propose a distributed deterministic algorithm enabling each node to enumerate its $(\Delta,d)$-twins in $2p$ rounds, using messages of size $O(\delta_\mathcal G\log n)$, where $n$ is the total number of nodes and $\delta_\mathcal G$ is the maximum degree of the graphs $G_t$'s. Moreover, using randomized techniques borrowed from distributed hash function sampling, we reduce the message size down to $O(\log n)$ w.h.p.

Flow interaction between a plain-fluid region in contact with a porous layer attracted significant attention from modelling and analysis sides due to numerous applications in biology, environment and industry. In the most widely used coupled model, fluid flow is described by the Stokes equations in the free-flow domain and Darcy's law in the porous medium, and complemented by the appropriate interface conditions. However, traditional coupling concepts are restricted, with a few exceptions, to one-dimensional flows parallel to the fluid-porous interface. In this work, we use an alternative approach to model interaction between the plain-fluid domain and porous medium by considering a transition zone, and propose the full- and hybrid-dimensional Stokes-Brinkman-Darcy models. In the first case, the equi-dimensional Brinkman equations are considered in the transition region, and the appropriate interface conditions are set on the top and bottom of the transition zone. In the latter case, we perform a dimensional model reduction by averaging the Brinkman equations in the normal direction and using the proposed transmission conditions. The well-posedness of both coupled problems is proved, and some numerical simulations are carried out in order to validate the concepts.

In this paper, we prove that in the overparametrized regime, deep neural network provide universal approximations and can interpolate any data set, as long as the activation function is locally in $L^1(\RR)$ and not an affine function. Additionally, if the activation function is smooth and such an interpolation networks exists, then the set of parameters which interpolate forms a manifold. Furthermore, we give a characterization of the Hessian of the loss function evaluated at the interpolation points. In the last section, we provide a practical probabilistic method of finding such a point under general conditions on the activation function.

We describe a simple deterministic near-linear time approximation scheme for uncapacitated minimum cost flow in undirected graphs with real edge weights, a problem also known as transshipment. Specifically, our algorithm takes as input a (connected) undirected graph $G = (V, E)$, vertex demands $b \in \mathbb{R}^V$ such that $\sum_{v \in V} b(v) = 0$, positive edge costs $c \in \mathbb{R}_{>0}^E$, and a parameter $\varepsilon > 0$. In $O(\varepsilon^{-2} m \log^{O(1)} n)$ time, it returns a flow $f$ such that the net flow out of each vertex is equal to the vertex's demand and the cost of the flow is within a $(1 + \varepsilon)$ factor of optimal. Our algorithm is combinatorial and has no running time dependency on the demands or edge costs. With the exception of a recent result presented at STOC 2022 for polynomially bounded edge weights, all almost- and near-linear time approximation schemes for transshipment relied on randomization to embed the problem instance into low-dimensional space. Our algorithm instead deterministically approximates the cost of routing decisions that would be made if the input were subject to a random tree embedding. To avoid computing the $\Omega(n^2)$ vertex-vertex distances that an approximation of this kind suggests, we also limit the available routing decisions using distances explicitly stored in the well-known Thorup-Zwick distance oracle.

Recent advances unveiled physical neural networks as promising machine learning platforms, offering faster and more energy-efficient information processing. Compared with extensively-studied optical neural networks, the development of mechanical neural networks (MNNs) remains nascent and faces significant challenges, including heavy computational demands and learning with approximate gradients. Here, we introduce the mechanical analogue of in situ backpropagation to enable highly efficient training of MNNs. We demonstrate that the exact gradient can be obtained locally in MNNs, enabling learning through their immediate vicinity. With the gradient information, we showcase the successful training of MNNs for behavior learning and machine learning tasks, achieving high accuracy in regression and classification. Furthermore, we present the retrainability of MNNs involving task-switching and damage, demonstrating the resilience. Our findings, which integrate the theory for training MNNs and experimental and numerical validations, pave the way for mechanical machine learning hardware and autonomous self-learning material systems.

Artificial neural networks are often interpreted as abstract models of biological neuronal networks, but they are typically trained using the biologically unrealistic backpropagation algorithm and its variants. Predictive coding has been proposed as a potentially more biologically realistic alternative to backpropagation for training neural networks. This manuscript reviews and extends recent work on the mathematical relationship between predictive coding and backpropagation for training feedforward artificial neural networks on supervised learning tasks. Implications of these results for the interpretation of predictive coding and deep neural networks as models of biological learning are discussed along with a repository of functions, Torch2PC, for performing predictive coding with PyTorch neural network models.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司