亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Echocardiography (echo) is an ultrasound imaging modality that is widely used for various cardiovascular diagnosis tasks. Due to inter-observer variability in echo-based diagnosis, which arises from the variability in echo image acquisition and the interpretation of echo images based on clinical experience, vision-based machine learning (ML) methods have gained popularity to act as secondary layers of verification. For such safety-critical applications, it is essential for any proposed ML method to present a level of explainability along with good accuracy. In addition, such methods must be able to process several echo videos obtained from various heart views and the interactions among them to properly produce predictions for a variety of cardiovascular measurements or interpretation tasks. Prior work lacks explainability or is limited in scope by focusing on a single cardiovascular task. To remedy this, we propose a General, Echo-based, Multi-Level Transformer (GEMTrans) framework that provides explainability, while simultaneously enabling multi-video training where the inter-play among echo image patches in the same frame, all frames in the same video, and inter-video relationships are captured based on a downstream task. We show the flexibility of our framework by considering two critical tasks including ejection fraction (EF) and aortic stenosis (AS) severity detection. Our model achieves mean absolute errors of 4.15 and 4.84 for single and dual-video EF estimation and an accuracy of 96.5 % for AS detection, while providing informative task-specific attention maps and prototypical explainability.

相關內容

Vehicle-to-Everything (V2X) collaborative perception is crucial for autonomous driving. However, achieving high-precision V2X perception requires a significant amount of annotated real-world data, which can always be expensive and hard to acquire. Simulated data have raised much attention since they can be massively produced at an extremely low cost. Nevertheless, the significant domain gap between simulated and real-world data, including differences in sensor type, reflectance patterns, and road surroundings, often leads to poor performance of models trained on simulated data when evaluated on real-world data. In addition, there remains a domain gap between real-world collaborative agents, e.g. different types of sensors may be installed on autonomous vehicles and roadside infrastructures with different extrinsics, further increasing the difficulty of sim2real generalization. To take full advantage of simulated data, we present a new unsupervised sim2real domain adaptation method for V2X collaborative detection named Decoupled Unsupervised Sim2Real Adaptation (DUSA). Our new method decouples the V2X collaborative sim2real domain adaptation problem into two sub-problems: sim2real adaptation and inter-agent adaptation. For sim2real adaptation, we design a Location-adaptive Sim2Real Adapter (LSA) module to adaptively aggregate features from critical locations of the feature map and align the features between simulated data and real-world data via a sim/real discriminator on the aggregated global feature. For inter-agent adaptation, we further devise a Confidence-aware Inter-agent Adapter (CIA) module to align the fine-grained features from heterogeneous agents under the guidance of agent-wise confidence maps. Experiments demonstrate the effectiveness of the proposed DUSA approach on unsupervised sim2real adaptation from the simulated V2XSet dataset to the real-world DAIR-V2X-C dataset.

Nowadays, realistic simulation environments are essential to validate and build reliable robotic solutions. This is particularly true when using Reinforcement Learning (RL) based control policies. To this end, both robotics and RL developers need tools and workflows to create physically accurate simulations and synthetic datasets. Gazebo, MuJoCo, Webots, Pybullets or Isaac Sym are some of the many tools available to simulate robotic systems. Developing learning-based methods for space navigation is, due to the highly complex nature of the problem, an intensive data-driven process that requires highly parallelized simulations. When it comes to the control of spacecrafts, there is no easy to use simulation library designed for RL. We address this gap by harnessing the capabilities of NVIDIA Isaac Gym, where both physics simulation and the policy training reside on GPU. Building on this tool, we provide an open-source library enabling users to simulate thousands of parallel spacecrafts, that learn a set of maneuvering tasks, such as position, attitude, and velocity control. These tasks enable to validate complex space scenarios, such as trajectory optimization for landing, docking, rendezvous and more.

Recently, Graph Transformer (GT) models have been widely used in the task of Molecular Property Prediction (MPP) due to their high reliability in characterizing the latent relationship among graph nodes (i.e., the atoms in a molecule). However, most existing GT-based methods usually explore the basic interactions between pairwise atoms, and thus they fail to consider the important interactions among critical motifs (e.g., functional groups consisted of several atoms) of molecules. As motifs in a molecule are significant patterns that are of great importance for determining molecular properties (e.g., toxicity and solubility), overlooking motif interactions inevitably hinders the effectiveness of MPP. To address this issue, we propose a novel Atom-Motif Contrastive Transformer (AMCT), which not only explores the atom-level interactions but also considers the motif-level interactions. Since the representations of atoms and motifs for a given molecule are actually two different views of the same instance, they are naturally aligned to generate the self-supervisory signals for model training. Meanwhile, the same motif can exist in different molecules, and hence we also employ the contrastive loss to maximize the representation agreement of identical motifs across different molecules. Finally, in order to clearly identify the motifs that are critical in deciding the properties of each molecule, we further construct a property-aware attention mechanism into our learning framework. Our proposed AMCT is extensively evaluated on seven popular benchmark datasets, and both quantitative and qualitative results firmly demonstrate its effectiveness when compared with the state-of-the-art methods.

Artificial neural networks suffer from catastrophic forgetting when they are sequentially trained on multiple tasks. To overcome this problem, there exist many continual learning strategies. One of the most effective is the hypernetwork-based approach. The hypernetwork generates the weights of a target model based on the task's identity. The model's main limitation is that hypernetwork can produce completely different nests for each task. Consequently, each task is solved separately. The model does not use information from the network dedicated to previous tasks and practically produces new architectures when it learns the subsequent tasks. To solve such a problem, we use the lottery ticket hypothesis, which postulates the existence of sparse subnetworks, named winning tickets, that preserve the performance of a full network. In the paper, we propose a method called HyperMask, which trains a single network for all tasks. Hypernetwork produces semi-binary masks to obtain target subnetworks dedicated to new tasks. This solution inherits the ability of the hypernetwork to adapt to new tasks with minimal forgetting. Moreover, due to the lottery ticket hypothesis, we can use a single network with weighted subnets dedicated to each task.

In contrast to conventional visual question answering, video-grounded dialog necessitates a profound understanding of both dialog history and video content for accurate response generation. Despite commendable strides made by existing methodologies, they often grapple with the challenges of incrementally understanding intricate dialog histories and assimilating video information. In response to this gap, we present an iterative tracking and reasoning strategy that amalgamates a textual encoder, a visual encoder, and a generator. At its core, our textual encoder is fortified with a path tracking and aggregation mechanism, adept at gleaning nuances from dialog history that are pivotal to deciphering the posed questions. Concurrently, our visual encoder harnesses an iterative reasoning network, meticulously crafted to distill and emphasize critical visual markers from videos, enhancing the depth of visual comprehension. Culminating this enriched information, we employ the pre-trained GPT-2 model as our response generator, stitching together coherent and contextually apt answers. Our empirical assessments, conducted on two renowned datasets, testify to the prowess and adaptability of our proposed design.

For efficient query processing, DBMS query optimizers have for decades relied on delicate cardinality estimation methods. In this work, we propose an Attention-based LEarned Cardinality Estimator (ALECE for short) for SPJ queries. The core idea is to discover the implicit relationships between queries and underlying dynamic data using attention mechanisms in ALECE's two modules that are built on top of carefully designed featurizations for data and queries. In particular, from all attributes in the database, the data-encoder module obtains organic and learnable aggregations which implicitly represent correlations among the attributes, whereas the query-analyzer module builds a bridge between the query featurizations and the data aggregations to predict the query's cardinality. We experimentally evaluate ALECE on multiple dynamic workloads. The results show that ALECE enables PostgreSQL's optimizer to achieve nearly optimal performance, clearly outperforming its built-in cardinality estimator and other alternatives.

Vision Transformers (ViTs) have revolutionized medical imaging analysis, showcasing superior efficacy compared to conventional Convolutional Neural Networks (CNNs) in vital tasks such as polyp classification, detection, and segmentation. Leveraging attention mechanisms to focus on specific image regions, ViTs exhibit contextual awareness in processing visual data, culminating in robust and precise predictions, even for intricate medical images. Moreover, the inherent self-attention mechanism in Transformers accommodates varying input sizes and resolutions, granting an unprecedented flexibility absent in traditional CNNs. However, Transformers grapple with challenges like excessive memory usage and limited training parallelism due to self-attention, rendering them impractical for real-time disease detection on resource-constrained devices. In this study, we address these hurdles by investigating the integration of the recently introduced retention mechanism into polyp segmentation, introducing RetSeg, an encoder-decoder network featuring multi-head retention blocks. Drawing inspiration from Retentive Networks (RetNet), RetSeg is designed to bridge the gap between precise polyp segmentation and resource utilization, particularly tailored for colonoscopy images. We train and validate RetSeg for polyp segmentation employing two publicly available datasets: Kvasir-SEG and CVC-ClinicDB. Additionally, we showcase RetSeg's promising performance across diverse public datasets, including CVC-ColonDB, ETIS-LaribPolypDB, CVC-300, and BKAI-IGH NeoPolyp. While our work represents an early-stage exploration, further in-depth studies are imperative to advance these promising findings.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

北京阿比特科技有限公司