This paper presents a framework for enforcing penalties on intelligent agents that do not comply with authorization or obligation policies in a changing environment. A framework is proposed to represent and reason about penalties in plans, and an algorithm is proposed to penalize an agent's actions based on their level of compliance with respect to authorization and obligation policies. Being aware of penalties an agent can choose a plan with a minimal total penalty, unless there is an emergency goal like saving a human's life. The paper concludes that this framework can reprimand insubordinate agents.
This paper studies the design of optimal proper scoring rules when the principal has partial knowledge of an agent's signal distribution. Recent work characterizes the proper scoring rules that maximize the increase of an agent's payoff when the agent chooses to access a costly signal to refine a posterior belief from her prior prediction, under the assumption that the agent's signal distribution is fully known to the principal. In our setting, the principal only knows about a set of distributions where the agent's signal distribution belongs. We formulate the scoring rule design problem as a max-min optimization that maximizes the worst-case increase in payoff across the set of distributions. We propose an efficient algorithm to compute an optimal scoring rule when the set of distributions is finite, and devise a fully polynomial-time approximation scheme that accommodates various infinite sets of distributions. We further remark that widely used scoring rules, such as the quadratic and log rules, as well as previously identified optimal scoring rules under full knowledge, can be far from optimal in our partial knowledge settings.
This paper presents a data-driven strategy to streamline the deployment of model-based controllers in legged robotic hardware platforms. Our approach leverages a model-free safe learning algorithm to automate the tuning of control gains, addressing the mismatch between the simplified model used in the control formulation and the real system. This method substantially mitigates the risk of hazardous interactions with the robot by sample-efficiently optimizing parameters within a probably safe region. Additionally, we extend the applicability of our approach to incorporate the different gait parameters as contexts, leading to a safe, sample-efficient exploration algorithm capable of tuning a motion controller for diverse gait patterns. We validate our method through simulation and hardware experiments, where we demonstrate that the algorithm obtains superior performance on tuning a model-based motion controller for multiple gaits safely.
This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis. Our model assumes the observed data to be a random realization of an approximate CP low-rank functional tensor measured on a discrete time grid. Incorporating tensor algebra and the theory of Reproducing Kernel Hilbert Space (RKHS), we propose a novel RKHS-based constrained power iteration with spectral initialization. Our method can successfully estimate both singular vectors and functions of the low-rank structure in the observed data. With mild assumptions, we establish the non-asymptotic contractive error bounds for the proposed algorithm. The superiority of the proposed framework is demonstrated via extensive experiments on both simulated and real data.
Sparse high-dimensional functions have arisen as a rich framework to study the behavior of gradient-descent methods using shallow neural networks, showcasing their ability to perform feature learning beyond linear models. Amongst those functions, the simplest are single-index models $f(x) = \phi( x \cdot \theta^*)$, where the labels are generated by an arbitrary non-linear scalar link function $\phi$ applied to an unknown one-dimensional projection $\theta^*$ of the input data. By focusing on Gaussian data, several recent works have built a remarkable picture, where the so-called information exponent (related to the regularity of the link function) controls the required sample complexity. In essence, these tools exploit the stability and spherical symmetry of Gaussian distributions. In this work, building from the framework of \cite{arous2020online}, we explore extensions of this picture beyond the Gaussian setting, where both stability or symmetry might be violated. Focusing on the planted setting where $\phi$ is known, our main results establish that Stochastic Gradient Descent can efficiently recover the unknown direction $\theta^*$ in the high-dimensional regime, under assumptions that extend previous works \cite{yehudai2020learning,wu2022learning}.
This paper develops a novel minimal-state operational semantics for higher-order functional languages which uses only the call stack and two source program points as the complete state information: there is no environment, no substitution, no continuation, etc. We prove this form of operational semantics is equivalent to standard presentations. We then show how this approach can open the door to potential new applications: we define a program analysis as a direct finitization of this operational semantics. The program analysis that naturally emerges has a number of novel and interesting properties compared to standard program analyses for higher-order programs: for example, it can infer recurrences, and does not need value widening. We both give a formal definition of the analysis and describe our current implementation.
Weak supervision has emerged as a promising approach for rapid and large-scale dataset creation in response to the increasing demand for accelerated NLP development. By leveraging labeling functions, weak supervision allows practitioners to generate datasets quickly by creating learned label models that produce soft-labeled datasets. This paper aims to show how such an approach can be utilized to build an Indonesian NLP dataset from conservation news text. We construct two types of datasets: multi-class classification and sentiment classification. We then provide baseline experiments using various pretrained language models. These baseline results demonstrate test performances of 59.79% accuracy and 55.72% F1-score for sentiment classification, 66.87% F1-score-macro, 71.5% F1-score-micro, and 83.67% ROC-AUC for multi-class classification. Additionally, we release the datasets and labeling functions used in this work for further research and exploration.
The burgeoning generative artificial intelligence technology offers novel insights into the development of semantic communication (SemCom) frameworks. These frameworks hold the potential to address the challenges associated with the black-box nature inherent in existing end-to-end training manner for the existing SemCom framework, as well as deterioration of the user experience caused by the inevitable error floor in deep learning-based SemCom. In this paper, we focus on the widespread remote monitoring scenario, and propose a semantic change driven generative SemCom framework. Therein, the semantic encoder and semantic decoder can be optimized independently. Specifically, we develop a modular semantic encoder with value of information based semantic sampling function. In addition, we propose a conditional denoising diffusion probabilistic mode-assisted semantic decoder that relies on received semantic information from the source, namely, the semantic map, and the local static scene information to remotely regenerate scenes. Moreover, we demonstrate the effectiveness of the proposed semantic encoder and decoder as well as the considerable potential in reducing energy consumption through simulation based on the realistic $\mathcal{F}$ composite channel fading model. The code is available at //github.com/wty2011jl/SCDGSC.git.
We propose a novel interpretable deep neural network for text classification, called ProtoryNet, based on a new concept of prototype trajectories. Motivated by the prototype theory in modern linguistics, ProtoryNet makes a prediction by finding the most similar prototype for each sentence in a text sequence and feeding an RNN backbone with the proximity of each sentence to the corresponding active prototype. The RNN backbone then captures the temporal pattern of the prototypes, which we refer to as prototype trajectories. Prototype trajectories enable intuitive and fine-grained interpretation of the reasoning process of the RNN model, in resemblance to how humans analyze texts. We also design a prototype pruning procedure to reduce the total number of prototypes used by the model for better interpretability. Experiments on multiple public data sets show that ProtoryNet is more accurate than the baseline prototype-based deep neural net and reduces the performance gap compared to state-of-the-art black-box models. In addition, after prototype pruning, the resulting ProtoryNet models only need less than or around 20 prototypes for all datasets, which significantly benefits interpretability. Furthermore, we report a survey result indicating that human users find ProtoryNet more intuitive and easier to understand than other prototype-based methods.
This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at //explained.ai
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.