亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores the estimation of a dynamic spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model. The log-volatility term in this model can depend on (i) the spatial lag of the log-squared outcome variable, (ii) the time-lag of the log-squared outcome variable, (iii) the spatiotemporal lag of the log-squared outcome variable, (iv) exogenous variables, and (v) the unobserved heterogeneity across regions and time, i.e., the regional and time fixed effects. We examine the small and large sample properties of two quasi-maximum likelihood estimators and a generalized method of moments estimator for this model. We first summarize the theoretical properties of these estimators and then compare their finite sample properties through Monte Carlo simulations.

相關內容

This paper explores the expressive power of deep neural networks for a diverse range of activation functions. An activation function set $\mathscr{A}$ is defined to encompass the majority of commonly used activation functions, such as $\mathtt{ReLU}$, $\mathtt{LeakyReLU}$, $\mathtt{ReLU}^2$, $\mathtt{ELU}$, $\mathtt{CELU}$, $\mathtt{SELU}$, $\mathtt{Softplus}$, $\mathtt{GELU}$, $\mathtt{SiLU}$, $\mathtt{Swish}$, $\mathtt{Mish}$, $\mathtt{Sigmoid}$, $\mathtt{Tanh}$, $\mathtt{Arctan}$, $\mathtt{Softsign}$, $\mathtt{dSiLU}$, and $\mathtt{SRS}$. We demonstrate that for any activation function $\varrho\in \mathscr{A}$, a $\mathtt{ReLU}$ network of width $N$ and depth $L$ can be approximated to arbitrary precision by a $\varrho$-activated network of width $3N$ and depth $2L$ on any bounded set. This finding enables the extension of most approximation results achieved with $\mathtt{ReLU}$ networks to a wide variety of other activation functions, albeit with slightly increased constants. Significantly, we establish that the (width,$\,$depth) scaling factors can be further reduced from $(3,2)$ to $(1,1)$ if $\varrho$ falls within a specific subset of $\mathscr{A}$. This subset includes activation functions such as $\mathtt{ELU}$, $\mathtt{CELU}$, $\mathtt{SELU}$, $\mathtt{Softplus}$, $\mathtt{GELU}$, $\mathtt{SiLU}$, $\mathtt{Swish}$, and $\mathtt{Mish}$.

This letter advocates the use of a Tiny Machine Learning (TinyML) model for energy-efficient semantic data retrieval from the Internet of Things (IoT) devices. In our framework, the edge server (ES) transmits task-related TinyML model before starting data collection so that IoT devices can send only semantically relevant data. However, receiving the ML model and its processing at the IoT devices consumes additional energy. We consider the specific instance of image retrieval and investigate the gain brought by the proposed scheme in terms of energy efficiency, considering both the energy cost of introducing the ML model as well as that of wireless communication. Numerical evaluation shows that, compared to a baseline scheme, the proposed scheme can realize both high retrieval accuracy and high energy efficiency, which reaches up to 70% energy reduction when the number of stored images is sufficiently large. Although focused on image retrieval, our analysis is indicative of a broader set of communication scenarios in which the preemptive transmission of an ML model can increase communication efficiency.

Reconstructing natural speech from neural activity is vital for enabling direct communication via brain-computer interfaces. Previous efforts have explored the conversion of neural recordings into speech using complex deep neural network (DNN) models trained on extensive neural recording data, which is resource-intensive under regular clinical constraints. However, achieving satisfactory performance in reconstructing speech from limited-scale neural recordings has been challenging, mainly due to the complexity of speech representations and the neural data constraints. To overcome these challenges, we propose a novel transfer learning framework for neural-driven speech reconstruction, called Neural2Speech, which consists of two distinct training phases. First, a speech autoencoder is pre-trained on readily available speech corpora to decode speech waveforms from the encoded speech representations. Second, a lightweight adaptor is trained on the small-scale neural recordings to align the neural activity and the speech representation for decoding. Remarkably, our proposed Neural2Speech demonstrates the feasibility of neural-driven speech reconstruction even with only 20 minutes of intracranial data, which significantly outperforms existing baseline methods in terms of speech fidelity and intelligibility.

This paper introduces LeTO, a method for learning constrained visuomotor policy via differentiable trajectory optimization. Our approach uniquely integrates a differentiable optimization layer into the neural network. By formulating the optimization layer as a trajectory optimization problem, we enable the model to end-to-end generate actions in a safe and controlled fashion without extra modules. Our method allows for the introduction of constraints information during the training process, thereby balancing the training objectives of satisfying constraints, smoothing the trajectories, and minimizing errors with demonstrations. This "gray box" method marries the optimization-based safety and interpretability with the powerful representational abilities of neural networks. We quantitatively evaluate LeTO in simulation and on the real robot. In simulation, LeTO achieves a success rate comparable to state-of-the-art imitation learning methods, but the generated trajectories are of less uncertainty, higher quality, and smoother. In real-world experiments, we deployed LeTO to handle constraints-critical tasks. The results show the effectiveness of LeTO comparing with state-of-the-art imitation learning approaches. We release our code at //github.com/ZhengtongXu/LeTO.

We propose Compact and Swift Segmenting 3D Gaussians(CoSSegGaussians), a method for compact 3D-consistent scene segmentation at fast rendering speed with only RGB images input. Previous NeRF-based segmentation methods have relied on time-consuming neural scene optimization. While recent 3D Gaussian Splatting has notably improved speed, existing Gaussian-based segmentation methods struggle to produce compact masks, especially in zero-shot segmentation. This issue probably stems from their straightforward assignment of learnable parameters to each Gaussian, resulting in a lack of robustness against cross-view inconsistent 2D machine-generated labels. Our method aims to address this problem by employing Dual Feature Fusion Network as Gaussians' segmentation field. Specifically, we first optimize 3D Gaussians under RGB supervision. After Gaussian Locating, DINO features extracted from images are applied through explicit unprojection, which are further incorporated with spatial features from the efficient point cloud processing network. Feature aggregation is utilized to fuse them in a global-to-local strategy for compact segmentation features. Experimental results show that our model outperforms baselines on both semantic and panoptic zero-shot segmentation task, meanwhile consumes less than 10% inference time compared to NeRF-based methods. Code and more results will be available at //David-Dou.github.io/CoSSegGaussians

This paper introduces the multivariate beta mixture model (MBMM), a new probabilistic model for soft clustering. MBMM adapts to diverse cluster shapes because of the flexible probability density function of the multivariate beta distribution. We introduce the properties of MBMM, describe the parameter learning procedure, and present the experimental results, showing that MBMM fits diverse cluster shapes on synthetic and real datasets. The code is released anonymously at \url{//github.com/hhchen1105/mbmm/}.

Conventional embedding-based models approach event time prediction in temporal knowledge graphs (TKGs) as a ranking problem. However, they often fall short in capturing essential temporal relationships such as order and distance. In this paper, we propose TEILP, a logical reasoning framework that naturally integrates such temporal elements into knowledge graph predictions. We first convert TKGs into a temporal event knowledge graph (TEKG) which has a more explicit representation of time in term of nodes of the graph. The TEKG equips us to develop a differentiable random walk approach to time prediction. Finally, we introduce conditional probability density functions, associated with the logical rules involving the query interval, using which we arrive at the time prediction. We compare TEILP with state-of-the-art methods on five benchmark datasets. We show that our model achieves a significant improvement over baselines while providing interpretable explanations. In particular, we consider several scenarios where training samples are limited, event types are imbalanced, and forecasting the time of future events based on only past events is desired. In all these cases, TEILP outperforms state-of-the-art methods in terms of robustness.

This paper studies the theoretical framework of the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF). We consider a standard mathematical formulation, the reverse-KL regularized contextual bandit for RLHF. Despite its widespread practical application, a rigorous theoretical analysis of this formulation remains open. We investigate its behavior in three distinct settings -- offline, online, and hybrid -- and propose efficient algorithms with finite-sample theoretical guarantees. Moving towards practical applications, our framework, with a robust approximation of the information-theoretical policy improvement oracle, naturally gives rise to several novel RLHF algorithms. This includes an iterative version of the Direct Preference Optimization (DPO) algorithm for online settings, and a multi-step rejection sampling strategy for offline scenarios. Our empirical evaluations on real-world alignment experiment of large language model demonstrate that these proposed methods significantly surpass existing strong baselines, such as DPO and Rejection Sampling Optimization (RSO), showcasing the connections between solid theoretical foundations and their powerful practical implementations.

Dysarthric speech reconstruction (DSR) systems aim to automatically convert dysarthric speech into normal-sounding speech. The technology eases communication with speakers affected by the neuromotor disorder and enhances their social inclusion. NED-based (Neural Encoder-Decoder) systems have significantly improved the intelligibility of the reconstructed speech as compared with GAN-based (Generative Adversarial Network) approaches, but the approach is still limited by training inefficiency caused by the cascaded pipeline and auxiliary tasks of the content encoder, which may in turn affect the quality of reconstruction. Inspired by self-supervised speech representation learning and discrete speech units, we propose a Unit-DSR system, which harnesses the powerful domain-adaptation capacity of HuBERT for training efficiency improvement and utilizes speech units to constrain the dysarthric content restoration in a discrete linguistic space. Compared with NED approaches, the Unit-DSR system only consists of a speech unit normalizer and a Unit HiFi-GAN vocoder, which is considerably simpler without cascaded sub-modules or auxiliary tasks. Results on the UASpeech corpus indicate that Unit-DSR outperforms competitive baselines in terms of content restoration, reaching a 28.2% relative average word error rate reduction when compared to original dysarthric speech, and shows robustness against speed perturbation and noise.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

北京阿比特科技有限公司