WikiHow is an open-domain repository of instructional articles for a variety of tasks, which can be revised by users. In this paper, we extract pairwise versions of an instruction before and after a revision was made. Starting from a noisy dataset of revision histories, we specifically extract and analyze edits that involve cases of vagueness in instructions. We further investigate the ability of a neural model to distinguish between two versions of an instruction in our data by adopting a pairwise ranking task from previous work and showing improvements over existing baselines.
We extend classical methods of computational complexity to the setting of distributed computing, where they are sometimes more effective than in their original context. Our focus is on distributed decision in the LOCAL model, where multiple networked computers communicate via synchronous message-passing to collectively answer a question about their network topology. Rather unusually, we impose two orthogonal constraints on the running time of this model: the number of communication rounds is bounded by a constant, and the number of computation steps of each computer is polynomially bounded by the size of its local input and the messages it receives. By letting two players take turns assigning certificates to all computers in the network, we obtain a generalization of the polynomial hierarchy (and hence of the complexity classes $\mathbf{P}$ and $\mathbf{NP}$). We then extend some key results of complexity theory to this setting, in particular the Cook-Levin theorem (which identifies Boolean satisfiability as a complete problem for $\mathbf{NP}$), and Fagin's theorem (which characterizes $\mathbf{NP}$ as the problems expressible in existential second-order logic). The original results can be recovered as the special case where the network consists of a single computer. But perhaps more surprisingly, the task of separating complexity classes becomes easier in the general case: we can show that our hierarchy is infinite, while it remains notoriously open whether the same is true in the case of a single computer. (By contrast, a collapse of our hierarchy would have implied a collapse of the polynomial hierarchy.) As an application, we propose quantifier alternation as a new approach to measuring the locality of problems in distributed computing.
Transportation distance information is a powerful resource, but location records are often censored due to privacy concerns or regulatory mandates. We consider the problem of transportation event distance distribution reconstruction, which aims to handle this obstacle and has applications to public health informatics, logistics, and more. We propose numerical methods to approximate, sample from, and compare distributions of distances between censored location pairs. We validate empirically and demonstrate applicability to practical geospatial data analysis tasks. Our code is available on GitHub.
With the increasing interconnection of smart devices, users often desire to adopt the same app on quite different devices for identical tasks, such as watching the same movies on both their smartphones and TVs. However, the significant differences in screen size, aspect ratio, and interaction styles make it challenging to adapt Graphical User Interfaces (GUIs) across these devices. Although there are millions of apps available on Google Play, only a few thousand are designed to support smart TV displays. Existing techniques to map a mobile app GUI to a TV either adopt a responsive design, which struggles to bridge the substantial gap between phone and TV or use mirror apps for improved video display, which requires hardware support and extra engineering efforts. Instead of developing another app for supporting TVs, we propose a semi-automated approach to generate corresponding adaptive TV GUIs, given the phone GUIs as the input. Based on our empirical study of GUI pairs for TVs and phones in existing apps, we synthesize a list of rules for grouping and classifying phone GUIs, converting them to TV GUIs, and generating dynamic TV layouts and source code for the TV display. Our tool is not only beneficial to developers but also to GUI designers, who can further customize the generated GUIs for their TV app development. An evaluation and user study demonstrate the accuracy of our generated GUIs and the usefulness of our tool.
Sampling a target probability distribution with an unknown normalization constant is a fundamental challenge in computational science and engineering. Recent work shows that algorithms derived by considering gradient flows in the space of probability measures open up new avenues for algorithm development. This paper makes three contributions to this sampling approach by scrutinizing the design components of such gradient flows. Any instantiation of a gradient flow for sampling needs an energy functional and a metric to determine the flow, as well as numerical approximations of the flow to derive algorithms. Our first contribution is to show that the Kullback-Leibler divergence, as an energy functional, has the unique property (among all f-divergences) that gradient flows resulting from it do not depend on the normalization constant of the target distribution. Our second contribution is to study the choice of metric from the perspective of invariance. The Fisher-Rao metric is known as the unique choice (up to scaling) that is diffeomorphism invariant. As a computationally tractable alternative, we introduce a relaxed, affine invariance property for the metrics and gradient flows. In particular, we construct various affine invariant Wasserstein and Stein gradient flows. Affine invariant gradient flows are shown to behave more favorably than their non-affine-invariant counterparts when sampling highly anisotropic distributions, in theory and by using particle methods. Our third contribution is to study, and develop efficient algorithms based on Gaussian approximations of the gradient flows; this leads to an alternative to particle methods. We establish connections between various Gaussian approximate gradient flows, discuss their relation to gradient methods arising from parametric variational inference, and study their convergence properties both theoretically and numerically.
We explore how to capture the significance of a sub-text block in an article and how it may be used for text mining tasks. A sub-text block is a sub-sequence of sentences in the article. We formulate the notion of content significance distribution (CSD) of sub-text blocks, referred to as CSD of the first kind and denoted by CSD-1. In particular, we leverage Hugging Face's SentenceTransformer to generate contextual sentence embeddings, and use MoverScore over text embeddings to measure how similar a sub-text block is to the entire text. To overcome the exponential blowup on the number of sub-text blocks, we present an approximation algorithm and show that the approximated CSD-1 is almost identical to the exact CSD-1. Under this approximation, we show that the average and median CSD-1's for news, scholarly research, argument, and narrative articles share the same pattern. We also show that under a certain linear transformation, the complement of the cumulative distribution function of the beta distribution with certain values of $\alpha$ and $\beta$ resembles a CSD-1 curve. We then use CSD-1's to extract linguistic features to train an SVC classifier for assessing how well an article is organized. Through experiments, we show that this method achieves high accuracy for assessing student essays. Moreover, we study CSD of sentence locations, referred to as CSD of the second kind and denoted by CSD-2, and show that average CSD-2's for different types of articles possess distinctive patterns, which either conform common perceptions of article structures or provide rectification with minor deviation.
We present MoCheQoS, a tool to analyse quality of service (QoS) properties of message-passing systems. Building on the logic and the choreographic model we defined in recently published work, MoCheQoS implements a bounded model checking algorithm. We discuss strengths and weaknesses of MoCheQoS through some case studies.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
A recent development in Bayesian optimization is the use of local optimization strategies, which can deliver strong empirical performance on high-dimensional problems compared to traditional global strategies. The "folk wisdom" in the literature is that the focus on local optimization sidesteps the curse of dimensionality; however, little is known concretely about the expected behavior or convergence of Bayesian local optimization routines. We first study the behavior of the local approach, and find that the statistics of individual local solutions of Gaussian process sample paths are surprisingly good compared to what we would expect to recover from global methods. We then present the first rigorous analysis of such a Bayesian local optimization algorithm recently proposed by M\"uller et al. (2021), and derive convergence rates in both the noisy and noiseless settings.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.