亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that modeling a Grassmannian as symmetric orthogonal matrices $\operatorname{Gr}(k,\mathbb{R}^n) \cong\{Q \in \mathbb{R}^{n \times n} : Q^{\scriptscriptstyle\mathsf{T}} Q = I, \; Q^{\scriptscriptstyle\mathsf{T}} = Q,\; \operatorname{tr}(Q)=2k - n\}$ yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Pleba\'nski, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.

相關內容

The Wasserstein distance $\mathcal{W}_p$ is an important instance of an optimal transport cost. Its numerous mathematical properties as well as applications to various fields such as mathematical finance and statistics have been well studied in recent years. The adapted Wasserstein distance $\mathcal{A}\mathcal{W}_p$ extends this theory to laws of discrete time stochastic processes in their natural filtrations, making it particularly well suited for analyzing time-dependent stochastic optimization problems. While the topological differences between $\mathcal{A}\mathcal{W}_p$ and $\mathcal{W}_p$ are well understood, their differences as metrics remain largely unexplored beyond the trivial bound $\mathcal{W}_p\lesssim \mathcal{A}\mathcal{W}_p$. This paper closes this gap by providing upper bounds of $\mathcal{A}\mathcal{W}_p$ in terms of $\mathcal{W}_p$ through investigation of the smooth adapted Wasserstein distance. Our upper bounds are explicit and are given by a sum of $\mathcal{W}_p$, Eder's modulus of continuity and a term characterizing the tail behavior of measures. As a consequence, upper bounds on $\mathcal{W}_p$ automatically hold for $\mathcal{AW}_p$ under mild regularity assumptions on the measures considered. A particular instance of our findings is the inequality $\mathcal{A}\mathcal{W}_1\le C\sqrt{\mathcal{W}_1}$ on the set of measures that have Lipschitz kernels. Our work also reveals how smoothing of measures affects the adapted weak topology. In fact, we find that the topology induced by the smooth adapted Wasserstein distance exhibits a non-trivial interpolation property, which we characterize explicitly: it lies in between the adapted weak topology and the weak topology, and the inclusion is governed by the decay of the smoothing parameter.

The \emph{Stanley--Yan} (SY) \emph{inequality} gives the ultra-log-concavity for the numbers of bases of a matroid which have given sizes of intersections with $k$ fixed disjoint sets. The inequality was proved by Stanley (1981) for regular matroids, and by Yan (2023) in full generality. In the original paper, Stanley asked for equality conditions of the SY~inequality, and proved total equality conditions for regular matroids in the case $k=0$. In this paper, we completely resolve Stanley's problem. First, we obtain an explicit description of the equality cases of the SY inequality for $k=0$, extending Stanley's results to general matroids and removing the ``total equality'' assumption. Second, for $k\ge 1$, we prove that the equality cases of the SY inequality cannot be described in a sense that they are not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level.

We study the problem of Hamiltonian structure learning from real-time evolution: given the ability to apply $e^{-\mathrm{i} Ht}$ for an unknown local Hamiltonian $H = \sum_{a = 1}^m \lambda_a E_a$ on $n$ qubits, the goal is to recover $H$. This problem is already well-understood under the assumption that the interaction terms, $E_a$, are given, and only the interaction strengths, $\lambda_a$, are unknown. But how efficiently can we learn a local Hamiltonian without prior knowledge of its interaction structure? We present a new, general approach to Hamiltonian learning that not only solves the challenging structure learning variant, but also resolves other open questions in the area, all while achieving the gold standard of Heisenberg-limited scaling. In particular, our algorithm recovers the Hamiltonian to $\varepsilon$ error with total evolution time $O(\log (n)/\varepsilon)$, and has the following appealing properties: (1) it does not need to know the Hamiltonian terms; (2) it works beyond the short-range setting, extending to any Hamiltonian $H$ where the sum of terms interacting with a qubit has bounded norm; (3) it evolves according to $H$ in constant time $t$ increments, thus achieving constant time resolution. As an application, we can also learn Hamiltonians exhibiting power-law decay up to accuracy $\varepsilon$ with total evolution time beating the standard limit of $1/\varepsilon^2$.

We consider structured approximation of measures in Wasserstein space $\mathrm{W}_p(\mathbb{R}^d)$ for $p\in[1,\infty)$ using general measure approximants compactly supported on Voronoi regions derived from a scaled Voronoi partition of $\mathbb{R}^d$. We show that if a full rank lattice $\Lambda$ is scaled by a factor of $h\in(0,1]$, then approximation of a measure based on the Voronoi partition of $h\Lambda$ is $O(h)$ regardless of $d$ or $p$. We then use a covering argument to show that $N$-term approximations of compactly supported measures is $O(N^{-\frac1d})$ which matches known rates for optimal quantizers and empirical measure approximation in most instances. Additionally, we generalize our construction to nonuniform Voronoi partitions, highlighting the flexibility and robustness of our approach for various measure approximation scenarios. Finally, we extend these results to noncompactly supported measures with sufficient decay. Our findings are pertinent to applications in computer vision and machine learning where measures are used to represent structured data such as images.

We prove that for every positive integer $d$ and forest $F$, the class of intersection graphs of axis-aligned boxes in $\mathbb{R}^d$ with no induced $F$ subgraph is (polynomially) $\chi$-bounded.

For $k, n \geq 0$, and $c \in Z^n$, we consider ILP problems \begin{gather*} \max\bigl\{ c^\top x \colon A x = b,\, x \in Z^n_{\geq 0} \bigr\}\text{ with $A \in Z^{k \times n}$, $rank(A) = k$, $b \in Z^{k}$ and} \max\bigl\{ c^\top x \colon A x \leq b,\, x \in Z^n \bigr\} \text{ with $A \in Z^{(n+k) \times n}$, $rank(A) = n$, $b \in Z^{n+k}$.} \end{gather*} The first problem is called an \emph{ILP problem in the standard form of the codimension $k$}, and the second problem is called an \emph{ILP problem in the canonical form with $n+k$ constraints.} We show that, for any sufficiently large $\Delta$, both problems can be solved with $$ 2^{O(k)} \cdot (f_{k,d} \cdot \Delta)^2 / 2^{\Omega\bigl(\sqrt{\log(f_{k,d} \cdot \Delta)}\bigr)} $$ operations, where $ f_{k,d} = \min \Bigl\{ k^{k/2}, \bigl(\log k \cdot \log (d + k)\bigr)^{k/2} \Bigr\} $, $d$ is the dimension of a corresponding polyhedron and $\Delta$ is the maximum absolute value of $rank(A) \times rank(A)$ sub-determinants of $A$. As our second main result, we show that the feasibility variants of both problems can be solved with $$ 2^{O(k)} \cdot f_{k,d} \cdot \Delta \cdot \log^3(f_{k,d} \cdot \Delta) $$ operations. The constant $f_{k,d}$ can be replaced by other constant $g_{k,\Delta} = \bigl(\log k \cdot \log (k \Delta)\bigr)^{k/2}$ that depends only on $k$ and $\Delta$. Additionally, we consider different partial cases with $k=0$ and $k=1$, which have interesting applications. As a result of independent interest, we propose an $n^2/2^{\Omega\bigl(\sqrt{\log n}\bigr)}$-time algorithm for the tropical convolution problem on sequences, indexed by elements of a finite Abelian group of the order $n$. Additionally, we give a complete, self-contained error analysis of the generalized Discrete Fourier Transform for Abelian groups with respect to the Word-RAM computational model.

Let $Z_1,\ldots,Z_n$ be i.i.d. isotropic random vectors in $\mathbb{R}^p$, and $T \subset \mathbb{R}^p$ be a compact set. A classical line of empirical process theory characterizes the size of the suprema of the quadratic process \begin{align*} \sup_{t \in T} \bigg| \frac{1}{n}\sum_{i=1}^n \langle Z_i,t \rangle^2-\lVert t \rVert^2 \bigg|, \end{align*} via a single parameter known as the Gaussian width of $T$. This paper introduces an improved bound for the suprema of this quadratic process for standard Gaussian vectors $\{Z_i\}$ that can be exactly attained for certain choices of $T$, and is thus referred to as an exact bound. Our exact bound is expressed via a collection of (stochastic) Gaussian widths over spherical sections of $T$ that serves as a natural multi-scale analogue to the Gaussian width of $T$. Compared to the classical bounds for the quadratic process, our new bounds not only determine the optimal constants in the classical bounds that can be attained for some $T$, but also precisely capture certain subtle phase transitional behavior of the quadratic process beyond the reach of the classical bounds. To illustrate the utility of our results, we obtain tight versions of the Gaussian Dvoretzky-Milman theorem for random projection, and the Koltchinskii-Lounici theorem for covariance estimation, both with optimal constants. Moreover, our bounds recover the celebrated BBP phase transitional behavior of the top eigenvalue of the sample covariance and its generalization to the sample covariance error. The proof of our results exploits recently sharpened Gaussian comparison inequalities. The technical scope of our method of proof is further demonstrated in obtaining an exact bound for a two-sided Chevet inequality.

Consider a data matrix $Y = [\mathbf{y}_1, \cdots, \mathbf{y}_N]$ of size $M \times N$, where the columns are independent observations from a random vector $\mathbf{y}$ with zero mean and population covariance $\Sigma$. Let $\mathbf{u}_i$ and $\mathbf{v}_j$ denote the left and right singular vectors of $Y$, respectively. This study investigates the eigenvector/singular vector overlaps $\langle {\mathbf{u}_i, D_1 \mathbf{u}_j} \rangle$, $\langle {\mathbf{v}_i, D_2 \mathbf{v}_j} \rangle$ and $\langle {\mathbf{u}_i, D_3 \mathbf{v}_j} \rangle$, where $D_k$ are general deterministic matrices with bounded operator norms. We establish the convergence in probability of these eigenvector overlaps toward their deterministic counterparts with explicit convergence rates, when the dimension $M$ scales proportionally with the sample size $N$. Building on these findings, we offer a more precise characterization of the loss for Ledoit and Wolf's nonlinear shrinkage estimators of the population covariance $\Sigma$.

Let $\alpha,\beta \in \mathbb{R}_{>0}$ be such that $\alpha,\beta$ are quadratic and $\mathbb{Q}(\alpha)\neq \mathbb{Q}(\beta)$. Then every subset of $\mathbb{R}^n$ definable in both $(\mathbb{R},{<},+,\mathbb{Z},x\mapsto \alpha x)$ and $(\mathbb{R},{<},+,\mathbb{Z},x\mapsto \beta x)$ is already definable in $(\mathbb{R},{<},+,\mathbb{Z})$. As a consequence we generalize Cobham-Semenov theorems for sets of real numbers to $\beta$-numeration systems, where $\beta$ is a quadratic irrational.

In combinatorics on words, the well-studied factor complexity function $\rho_{\bf x}$ of a sequence ${\bf x}$ over a finite alphabet counts, for any nonnegative integer $n$, the number of distinct length-$n$ factors of $\mathbf{x}$. In this paper, we introduce the reflection complexity function $r_{\bf x}$ to enumerate the factors occurring in a sequence ${\bf x}$, up to reversing the order of symbols in a word. We introduce and prove general results on $r_{\bf x}$ regarding its growth properties and relationship with other complexity functions. We prove a Morse-Hedlund-type result characterizing eventually periodic sequences in terms of their reflection complexity, and we deduce a characterization of Sturmian sequences. Furthermore, we investigate the reflection complexity of quasi-Sturmian, episturmian, $(s+1)$-dimensional billiard, and complementation-symmetric Rote, and rich sequences. Furthermore, we prove that if ${\bf x}$ is $k$-automatic, then $r_{\bf x}$ is computably $k$-regular, and we use the software $\mathtt{Walnut}$ to evaluate the reflection complexity of automatic sequences, such as the Thue-Morse sequence. We note that there are still many unanswered questions about this measure.

北京阿比特科技有限公司