This paper focuses on the inverse elastic impedance and the geometry problem by a Cauchy data pair on the access part of the boundary in a two-dimensional case. Through the decomposition of the displacement, the problem is transform the solution of into a coupled boundary value problem that involves two scalar Helmholtz equations. Firstly, a uniqueness result is given, and a non-iterative algorithm is proposed to solve the data completion problem using a Cauchy data pair on a known part of the solution domain's boundary. Next, we introduce a Newton-type iterative method for reconstructing the boundary and the impedance function using the completion data on the unknown boundary, which is governed by a specific type of boundary conditions. Finally, we provide several examples to demonstrate the effectiveness and accuracy of the proposed method.
Intracranial aneurysms are the leading cause of stroke. One of the established treatment approaches is the embolization induced by coil insertion. However, the prediction of treatment and subsequent changed flow characteristics in the aneurysm, is still an open problem. In this work, we present an approach based on patient specific geometry and parameters including a coil representation as inhomogeneous porous medium. The model consists of the volume-averaged Navier-Stokes equations including the non-Newtonian blood rheology. We solve these equations using a problem-adapted lattice Boltzmann method and present a comparison between fully-resolved and volume-averaged simulations. The results indicate the validity of the model. Overall, this workflow allows for patient specific assessment of the flow due to potential treatment.
The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.
We consider the numerical behavior of the fixed-stress splitting method for coupled poromechanics as undrained regimes are approached. We explain that pressure stability is related to the splitting error of the scheme, not the fact that the discrete saddle point matrix never appears in the fixed-stress approach. This observation reconciles previous results regarding the pressure stability of the splitting method. Using examples of compositional poromechanics with application to geological CO$_2$ sequestration, we see that solutions obtained using the fixed-stress scheme with a low order finite element-finite volume discretization which is not inherently inf-sup stable can exhibit the same pressure oscillations obtained with the corresponding fully implicit scheme. Moreover, pressure jump stabilization can effectively remove these spurious oscillations in the fixed-stress setting, while also improving the efficiency of the scheme in terms of the number of iterations required at every time step to reach convergence.
We consider the Sherrington-Kirkpatrick model of spin glasses at high-temperature and no external field, and study the problem of sampling from the Gibbs distribution $\mu$ in polynomial time. We prove that, for any inverse temperature $\beta<1/2$, there exists an algorithm with complexity $O(n^2)$ that samples from a distribution $\mu^{alg}$ which is close in normalized Wasserstein distance to $\mu$. Namely, there exists a coupling of $\mu$ and $\mu^{alg}$ such that if $(x,x^{alg})\in\{-1,+1\}^n\times \{-1,+1\}^n$ is a pair drawn from this coupling, then $n^{-1}\mathbb E\{||x-x^{alg}||_2^2\}=o_n(1)$. The best previous results, by Bauerschmidt and Bodineau and by Eldan, Koehler, and Zeitouni, implied efficient algorithms to approximately sample (under a stronger metric) for $\beta<1/4$. We complement this result with a negative one, by introducing a suitable "stability" property for sampling algorithms, which is verified by many standard techniques. We prove that no stable algorithm can approximately sample for $\beta>1$, even under the normalized Wasserstein metric. Our sampling method is based on an algorithmic implementation of stochastic localization, which progressively tilts the measure $\mu$ towards a single configuration, together with an approximate message passing algorithm that is used to approximate the mean of the tilted measure.
We consider the classical problems of interpolating a polynomial given a black box for evaluation, and of multiplying two polynomials, in the setting where the bit-lengths of the coefficients may vary widely, so-called unbalanced polynomials. Writing s for the total bit-length and D for the degree, our new algorithms have expected running time $\tilde{O}(s \log D)$, whereas previous methods for (resp.) dense or sparse arithmetic have at least $\tilde{O}(sD)$ or $\tilde{O}(s^2)$ bit complexity.
Modeling the behavior of biological tissues and organs often necessitates the knowledge of their shape in the absence of external loads. However, when their geometry is acquired in-vivo through imaging techniques, bodies are typically subject to mechanical deformation due to the presence of external forces, and the load-free configuration needs to be reconstructed. This paper addresses this crucial and frequently overlooked topic, known as the inverse elasticity problem (IEP), by delving into both theoretical and numerical aspects, with a particular focus on cardiac mechanics. In this work, we extend Shield's seminal work to determine the structure of the IEP with arbitrary material inhomogeneities and in the presence of both body and active forces. These aspects are fundamental in computational cardiology, and we show that they may break the variational structure of the inverse problem. In addition, we show that the inverse problem might have no solution even in the presence of constant Neumann boundary conditions and a polyconvex strain energy functional. We then present the results of extensive numerical tests to validate our theoretical framework, and to characterize the computational challenges associated with a direct numerical approximation of the IEP. Specifically, we show that this framework outperforms existing approaches both in terms of robustness and optimality, such as Sellier's iterative procedure, even when the latter is improved with acceleration techniques. A notable discovery is that multigrid preconditioners are, in contrast to standard elasticity, not efficient, where a one-level additive Schwarz and generalized Dryja-Smith-Widlund provide a much more reliable alternative. Finally, we successfully address the IEP for a full-heart geometry, demonstrating that the IEP formulation can compute the stress-free configuration in real-life scenarios.
We analyze a Discontinuous Galerkin method for a problem with linear advection-reaction and $p$-type diffusion, with Sobolev indices $p\in (1, \infty)$. The discretization of the diffusion term is based on the full gradient including jump liftings and interior-penalty stabilization while, for the advective contribution, we consider a strengthened version of the classical upwind scheme. The developed error estimates track the dependence of the local contributions to the error on local P\'eclet numbers. A set of numerical tests supports the theoretical derivations.
This paper investigates the supercloseness of a singularly perturbed convection diffusion problem using the direct discontinuous Galerkin (DDG) method on a Shishkin mesh. The main technical difficulties lie in controlling the diffusion term inside the layer, the convection term outside the layer, and the inter element jump term caused by the discontinuity of the numerical solution. The main idea is to design a new composite interpolation, in which a global projection is used outside the layer to satisfy the interface conditions determined by the selection of numerical flux, thereby eliminating or controlling the troublesome terms on the unit interface; and inside the layer, Gau{\ss} Lobatto projection is used to improve the convergence order of the diffusion term. On the basis of that, by selecting appropriate parameters in the numerical flux, we obtain the supercloseness result of almost $k+1$ order under an energy norm. Numerical experiments support our main theoretical conclusion.
Inner products of neural network feature maps arises in a wide variety of machine learning frameworks as a method of modeling relations between inputs. This work studies the approximation properties of inner products of neural networks. It is shown that the inner product of a multi-layer perceptron with itself is a universal approximator for symmetric positive-definite relation functions. In the case of asymmetric relation functions, it is shown that the inner product of two different multi-layer perceptrons is a universal approximator. In both cases, a bound is obtained on the number of neurons required to achieve a given accuracy of approximation. In the symmetric case, the function class can be identified with kernels of reproducing kernel Hilbert spaces, whereas in the asymmetric case the function class can be identified with kernels of reproducing kernel Banach spaces. Finally, these approximation results are applied to analyzing the attention mechanism underlying Transformers, showing that any retrieval mechanism defined by an abstract preorder can be approximated by attention through its inner product relations. This result uses the Debreu representation theorem in economics to represent preference relations in terms of utility functions.
We present an information-theoretic lower bound for the problem of parameter estimation with time-uniform coverage guarantees. Via a new a reduction to sequential testing, we obtain stronger lower bounds that capture the hardness of the time-uniform setting. In the case of location model estimation, logistic regression, and exponential family models, our $\Omega(\sqrt{n^{-1}\log \log n})$ lower bound is sharp to within constant factors in typical settings.