亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The outer Lowner-John method is widely used in sensor fusion applications to find the smallest ellipsoid that can approximate the intersection of a set of ellipsoids, described by positive definite covariance matrices modeling the quality of each sensor. We propose a distributed algorithm to solve this problem when these matrices are defined over the network's nodes. This is of particular significance as it is the first decentralized algorithm capable of computing the covariance intersection ellipsoid by combining information from the entire network using only local interactions. The solution is based on a reformulation of the centralized problem, leading to a local protocol based on exact dynamic consensus tools. After reaching consensus, the protocol converges to an outer Lowner-John ellipsoid in finite time, and to the global optimum asymptotically. Formal convergence analysis and numerical experiments are provided to validate the proposal's advantages.

相關內容

We study unique continuation over an interface using a stabilized unfitted finite element method tailored to the conditional stability of the problem. The interface is approximated using an isoparametric transformation of the background mesh and the corresponding geometrical error is included in our error analysis. To counter possible destabilizing effects caused by non-conformity of the discretization and cope with the interface conditions, we introduce adapted regularization terms. This allows to derive error estimates based on conditional stability. Numerical experiments suggest that the presence of an interface seems to be of minor importance for the continuation of the solution beyond the data domain. On the other hand, certain convexity properties of the geometry are crucial as has already been observed for many other problems without interfaces.

Entanglement distribution is a key functionality of the Quantum Internet. However, quantum entanglement is very fragile, easily degraded by decoherence, which strictly constraints the time horizon within the distribution has to be completed. This, coupled with the quantum noise irremediably impinging on the channels utilized for entanglement distribution, may imply the need to attempt the distribution process multiple times before the targeted network nodes successfully share the desired entangled state. And there is no guarantee that this is accomplished within the time horizon dictated by the coherence times. As a consequence, in noisy scenarios requiring multiple distribution attempts, it may be convenient to stop the distribution process early. In this paper, we take steps in the direction of knowing when to stop the entanglement distribution by developing a theoretical framework, able to capture the quantum noise effects. Specifically, we first prove that the entanglement distribution process can be modeled as a Markov decision process. Then, we prove that the optimal decision policy exhibits attractive features, which we exploit to reduce the computational complexity. The developed framework provides quantum network designers with flexible tools to optimally engineer the design parameters of the entanglement distribution process.

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ sampled inputs $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from a random sample, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.

The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks. It is theoretically compelling since it can be seen as a Gaussian process posterior with the mean function given by the neural network's maximum-a-posteriori predictive function and the covariance function induced by the empirical neural tangent kernel. However, while its efficacy has been studied in large-scale tasks like image classification, it has not been studied in sequential decision-making problems like Bayesian optimization where Gaussian processes -- with simple mean functions and kernels such as the radial basis function -- are the de-facto surrogate models. In this work, we study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility. However, we also present some pitfalls that might arise and a potential problem with the LLA when the search space is unbounded.

As digital transformation continues, enterprises are generating, managing, and storing vast amounts of data, while artificial intelligence technology is rapidly advancing. However, it brings challenges in information security and data security. Data security refers to the protection of digital information from unauthorized access, damage, theft, etc. throughout its entire life cycle. With the promulgation and implementation of data security laws and the emphasis on data security and data privacy by organizations and users, Privacy-preserving technology represented by federated learning has a wide range of application scenarios. Federated learning is a distributed machine learning computing framework that allows multiple subjects to train joint models without sharing data to protect data privacy and solve the problem of data islands. However, the data among multiple subjects are independent of each other, and the data differences in quality may cause fairness issues in federated learning modeling, such as data bias among multiple subjects, resulting in biased and discriminatory models. Therefore, we propose DBFed, a debiasing federated learning framework based on domain-independent, which mitigates model bias by explicitly encoding sensitive attributes during client-side training. This paper conducts experiments on three real datasets and uses five evaluation metrics of accuracy and fairness to quantify the effect of the model. Most metrics of DBFed exceed those of the other three comparative methods, fully demonstrating the debiasing effect of DBFed.

We expect the generalization error to improve with more samples from a similar task, and to deteriorate with more samples from an out-of-distribution (OOD) task. In this work, we show a counter-intuitive phenomenon: the generalization error of a task can be a non-monotonic function of the number of OOD samples. As the number of OOD samples increases, the generalization error on the target task improves before deteriorating beyond a threshold. In other words, there is value in training on small amounts of OOD data. We use Fisher's Linear Discriminant on synthetic datasets and deep networks on computer vision benchmarks such as MNIST, CIFAR-10, CINIC-10, PACS and DomainNet to demonstrate and analyze this phenomenon. In the idealistic setting where we know which samples are OOD, we show that these non-monotonic trends can be exploited using an appropriately weighted objective of the target and OOD empirical risk. While its practical utility is limited, this does suggest that if we can detect OOD samples, then there may be ways to benefit from them. When we do not know which samples are OOD, we show how a number of go-to strategies such as data-augmentation, hyper-parameter optimization, and pre-training are not enough to ensure that the target generalization error does not deteriorate with the number of OOD samples in the dataset.

Data objects taking value in a general metric space have become increasingly common in modern data analysis. In this paper, we study two important statistical inference problems, namely, two-sample testing and change-point detection, for such non-Euclidean data under temporal dependence. Typical examples of non-Euclidean valued time series include yearly mortality distributions, time-varying networks, and covariance matrix time series. To accommodate unknown temporal dependence, we advance the self-normalization (SN) technique (Shao, 2010) to the inference of non-Euclidean time series, which is substantially different from the existing SN-based inference for functional time series that reside in Hilbert space (Zhang et al., 2011). Theoretically, we propose new regularity conditions that could be easier to check than those in the recent literature, and derive the limiting distributions of the proposed test statistics under both null and local alternatives. For change-point detection problem, we also derive the consistency for the change-point location estimator, and combine our proposed change-point test with wild binary segmentation to perform multiple change-point estimation. Numerical simulations demonstrate the effectiveness and robustness of our proposed tests compared with existing methods in the literature. Finally, we apply our tests to two-sample inference in mortality data and change-point detection in cryptocurrency data.

Linear-quadratic regulator (LQR) is a landmark problem in the field of optimal control, which is the concern of this paper. Generally, LQR is classified into state-feedback LQR (SLQR) and output-feedback LQR (OLQR) based on whether the full state is obtained. It has been suggested in existing literature that both the SLQR and the OLQR could be viewed as \textit{constrained nonconvex matrix optimization} problems in which the only variable to be optimized is the feedback gain matrix. In this paper, we introduce a first-order accelerated optimization framework of handling the LQR problem, and give its convergence analysis for the cases of SLQR and OLQR, respectively. Specifically, a Lipschiz Hessian property of LQR performance criterion is presented, which turns out to be a crucial property for the application of modern optimization techniques. For the SLQR problem, a continuous-time hybrid dynamic system is introduced, whose solution trajectory is shown to converge exponentially to the optimal feedback gain with Nesterov-optimal order $1-\frac{1}{\sqrt{\kappa}}$ ($\kappa$ the condition number). Then, the symplectic Euler scheme is utilized to discretize the hybrid dynamic system, and a Nesterov-type method with a restarting rule is proposed that preserves the continuous-time convergence rate, i.e., the discretized algorithm admits the Nesterov-optimal convergence order. For the OLQR problem, a Hessian-free accelerated framework is proposed, which is a two-procedure method consisting of semiconvex function optimization and negative curvature exploitation. In a time $\mathcal{O}(\epsilon^{-7/4}\log(1/\epsilon))$, the method can find an $\epsilon$-stationary point of the performance criterion; this entails that the method improves upon the $\mathcal{O}(\epsilon^{-2})$ complexity of vanilla gradient descent. Moreover, our method provides the second-order guarantee of stationary point.

Tests based on heteroskedasticity robust standard errors are an important technique in econometric practice. Choosing the right critical value, however, is not simple at all: conventional critical values based on asymptotics often lead to severe size distortions; and so do existing adjustments including the bootstrap. To avoid these issues, we suggest to use smallest size-controlling critical values, the generic existence of which we prove in this article for the commonly used test statistics. Furthermore, sufficient and often also necessary conditions for their existence are given that are easy to check. Granted their existence, these critical values are the canonical choice: larger critical values result in unnecessary power loss, whereas smaller critical values lead to over-rejections under the null hypothesis, make spurious discoveries more likely, and thus are invalid. We suggest algorithms to numerically determine the proposed critical values and provide implementations in accompanying software. Finally, we numerically study the behavior of the proposed testing procedures, including their power properties.

北京阿比特科技有限公司