亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education. The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation, in particular from some of the major tech companies who are leading in AI development. This regulation is likely to put at risk the budding field of open-source generative AI. Using a three-stage framework for Gen AI development (near, mid and long-term), we analyze the risks and opportunities of open-source generative AI models with similar capabilities to the ones currently available (near to mid-term) and with greater capabilities (long-term). We argue that, overall, the benefits of open-source Gen AI outweigh its risks. As such, we encourage the open sourcing of models, training and evaluation data, and provide a set of recommendations and best practices for managing risks associated with open-source generative AI.

相關內容

生(sheng)成(cheng)式(shi)(shi)人(ren)(ren)工(gong)智能(neng)是利用(yong)復(fu)雜的(de)算法、模(mo)型(xing)(xing)和(he)規則,從(cong)大(da)規模(mo)數據集中學習,以(yi)創造(zao)新的(de)原創內容的(de)人(ren)(ren)工(gong)智能(neng)技(ji)(ji)術(shu)(shu)。這項技(ji)(ji)術(shu)(shu)能(neng)夠創造(zao)文本(ben)、圖片、聲音、視(shi)頻(pin)和(he)代碼等(deng)多(duo)種類型(xing)(xing)的(de)內容,全面超越了(le)傳統(tong)軟件的(de)數據處(chu)理和(he)分析能(neng)力(li)。2022年(nian)末(mo),OpenAI推出的(de)ChatGPT標志著這一技(ji)(ji)術(shu)(shu)在(zai)文本(ben)生(sheng)成(cheng)領域取(qu)得了(le)顯著進展,2023年(nian)被(bei)稱為(wei)(wei)生(sheng)成(cheng)式(shi)(shi)人(ren)(ren)工(gong)智能(neng)的(de)突破之年(nian)。這項技(ji)(ji)術(shu)(shu)從(cong)單一的(de)語言生(sheng)成(cheng)逐步(bu)向多(duo)模(mo)態、具身化快(kuai)速發展。在(zai)圖像生(sheng)成(cheng)方面,生(sheng)成(cheng)系統(tong)在(zai)解(jie)釋(shi)提(ti)示和(he)生(sheng)成(cheng)逼真(zhen)輸出方面取(qu)得了(le)顯著的(de)進步(bu)。同(tong)時,視(shi)頻(pin)和(he)音頻(pin)的(de)生(sheng)成(cheng)技(ji)(ji)術(shu)(shu)也在(zai)迅(xun)速發展,這為(wei)(wei)虛(xu)擬現(xian)實(shi)和(he)元宇(yu)宙的(de)實(shi)現(xian)提(ti)供了(le)新的(de)途徑(jing)。生(sheng)成(cheng)式(shi)(shi)人(ren)(ren)工(gong)智能(neng)技(ji)(ji)術(shu)(shu)在(zai)各行(xing)業、各領域都具有(you)廣泛的(de)應(ying)用(yong)前景。

Retrieval-Augmented Generation (RAG) has recently gained traction in natural language processing. Numerous studies and real-world applications are leveraging its ability to enhance generative models through external information retrieval. Evaluating these RAG systems, however, poses unique challenges due to their hybrid structure and reliance on dynamic knowledge sources. To better understand these challenges, we conduct A Unified Evaluation Process of RAG (Auepora) and aim to provide a comprehensive overview of the evaluation and benchmarks of RAG systems. Specifically, we examine and compare several quantifiable metrics of the Retrieval and Generation components, such as relevance, accuracy, and faithfulness, within the current RAG benchmarks, encompassing the possible output and ground truth pairs. We then analyze the various datasets and metrics, discuss the limitations of current benchmarks, and suggest potential directions to advance the field of RAG benchmarks.

Opinion Dynamics is an interdisciplinary area of research. Psychology and Sociology have proposed models of how individuals form opinions and how social interactions influence this process. Socio-Physicists have interpreted patterns in opinion formation as arising from non-linearity in the underlying process, shaping the models. Agent-based modeling has offered a platform to study the Opinion Dynamics of large groups. This paper recasts recent models in opinion formation into a proper dynamical system, injecting the idea of clock time into evolving opinions. The time interval between successive receipts of new information (frequency of information receipts) becomes a factor to study. Social media has shrunk time intervals between information receipts, increasing their frequency. The recast models show that shorter intervals and larger networks increase an individual's propensity for polarization, defined as an inability to hold a neutral opinion. A Polarization number based on sociological parameters is proposed, with critical values beyond which individuals are prone to polarization, depending on psychological parameters. Reduced time intervals and larger interacting groups can push the Polarization number to critical values, contributing to polarization. The Extent of Polarization is defined as the width of the region around neutral within which an individual cannot hold an opinion. Results are reported for model parameters found in the literature. The findings offer an opportunity to adjust model parameters to align with empirical evidence, aiding the study of Opinion Dynamics in large social networks using Agent-Based Modeling.

Neural Controlled Differential Equations (NCDEs) are a state-of-the-art tool for supervised learning with irregularly sampled time series (Kidger, 2020). However, no theoretical analysis of their performance has been provided yet, and it remains unclear in particular how the irregularity of the time series affects their predictions. By merging the rich theory of controlled differential equations (CDE) and Lipschitz-based measures of the complexity of deep neural nets, we take a first step towards the theoretical understanding of NCDE. Our first result is a generalization bound for this class of predictors that depends on the regularity of the time series data. In a second time, we leverage the continuity of the flow of CDEs to provide a detailed analysis of both the sampling-induced bias and the approximation bias. Regarding this last result, we show how classical approximation results on neural nets may transfer to NCDEs. Our theoretical results are validated through a series of experiments.

Embedding high-dimensional data into a low-dimensional space is an indispensable component of data analysis. In numerous applications, it is necessary to align and jointly embed multiple datasets from different studies or experimental conditions. Such datasets may share underlying structures of interest but exhibit individual distortions, resulting in misaligned embeddings using traditional techniques. In this work, we propose \textit{Entropic Optimal Transport (EOT) eigenmaps}, a principled approach for aligning and jointly embedding a pair of datasets with theoretical guarantees. Our approach leverages the leading singular vectors of the EOT plan matrix between two datasets to extract their shared underlying structure and align the datasets accordingly in a common embedding space. We interpret our approach as an inter-data variant of the classical Laplacian eigenmaps and diffusion maps embeddings, showing that it enjoys many favorable analogous properties. We then analyze a data-generative model where two observed high-dimensional datasets share latent variables on a common low-dimensional manifold, but each dataset is subject to data-specific translation, scaling, nuisance structures, and noise. We show that in a high-dimensional asymptotic regime, the EOT plan recovers the shared manifold structure by approximating a kernel function evaluated at the locations of the latent variables. Subsequently, we provide a geometric interpretation of our embedding by relating it to the eigenfunctions of population-level operators encoding the density and geometry of the shared manifold. Finally, we showcase the performance of our approach for data integration and embedding through simulations and analyses of real-world biological data, demonstrating its advantages over alternative methods in challenging scenarios.

Recursive Best-First Search (RBFS) is a heuristic search algorithm known for its efficient memory usage compared to traditional best-first search methods like A*. Despite its theoretical advantages, RBFS is complex and difficult to teach and to implement, limiting its widespread adoption. To address these challenges, Iterative Linear Best-First Search (ILBFS) was introduced as a simpler, more intuitive alternative while maintaining the linear space complexity of RBFS. In this paper, we present the first implementation of ILBFS, validate its memory usage and node expansion order claims, and explore critical aspects of its implementation, such as tie-breaking and node deletion mechanisms. Our findings demonstrate that ILBFS can serve as an effective stepping stone for researchers and practitioners looking to use memory efficient best-first search methods, facilitating the adoption of RBFS-like algorithms.

The Schur-Horn theorem is a well-known result that characterizes the relationship between the diagonal elements and eigenvalues of a symmetric (Hermitian) matrix. In this paper, we extend this theorem by exploring the eigenvalue perturbation of a symmetric (Hermitian) matrix with fixed diagonals, which is referred to as the continuity of the Schur-Horn mapping. We introduce a concept called strong Schur-Horn continuity, characterized by minimal constraints on the perturbation. We demonstrate that several categories of matrices exhibit strong Schur-Horn continuity. Leveraging this notion, along with a majorization constraint on the perturbation, we prove the Schur-Horn continuity for general symmetric (Hermitian) matrices. The Schur-Horn continuity finds applications in oblique manifold optimization related to quantum computing.

This study investigates whether division on political topics is mapped with the distinctive patterns of language use. We collect a total 145,832 Reddit comments on the abortion debate and explore the languages of subreddit communities r/prolife and r/prochoice. With consideration of the Moral Foundations Theory, we examine lexical patterns in three ways. First, we compute proportional frequencies of lexical items from the Moral Foundations Dictionary in order to make inferences about each group's moral considerations when forming arguments for and against abortion. We then create n-gram models to reveal frequent collocations from each stance group and better understand how commonly used words are patterned in their linguistic context and in relation to morality values. Finally, we use Latent Dirichlet Allocation to identify underlying topical structures in the corpus data. Results show that the use of morality words is mapped with the stances on abortion.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

北京阿比特科技有限公司