We present a flexible method for computing Bayesian optimal experimental designs (BOEDs) for inverse problems with intractable posteriors. The approach is applicable to a wide range of BOED problems and can accommodate various optimality criteria, prior distributions and noise models. The key to our approach is the construction of a transport-map-based surrogate to the joint probability law of the design, observational and inference random variables. This order-preserving transport map is constructed using tensor trains and can be used to efficiently sample from (and evaluate approximate densities of) conditional distributions that are required in the evaluation of many commonly-used optimality criteria. The algorithm is also extended to sequential data acquisition problems, where experiments can be performed in sequence to update the state of knowledge about the unknown parameters. The sequential BOED problem is made computationally feasible by preconditioning the approximation of the joint density at the current stage using transport maps constructed at previous stages. The flexibility of our approach in finding optimal designs is illustrated with some numerical examples inspired by disease modeling and the reconstruction of subsurface structures in aquifers.
Data augmentation is an effective way to diversify corpora in machine translation, but previous methods may introduce semantic inconsistency between original and augmented data because of irreversible operations and random subword sampling procedures. To generate both symbolically diverse and semantically consistent augmentation data, we propose Deterministic Reversible Data Augmentation (DRDA), a simple but effective data augmentation method for neural machine translation. DRDA adopts deterministic segmentations and reversible operations to generate multi-granularity subword representations and pulls them closer together with multi-view techniques. With no extra corpora or model changes required, DRDA outperforms strong baselines on several translation tasks with a clear margin (up to 4.3 BLEU gain over Transformer) and exhibits good robustness in noisy, low-resource, and cross-domain datasets.
Among various acquisition functions (AFs) in Bayesian optimization (BO), Gaussian process upper confidence bound (GP-UCB) and Thompson sampling (TS) are well-known options with established theoretical properties regarding Bayesian cumulative regret (BCR). Recently, it has been shown that a randomized variant of GP-UCB achieves a tighter BCR bound compared with GP-UCB, which we call the tighter BCR bound for brevity. Inspired by this study, this paper first shows that TS achieves the tighter BCR bound. On the other hand, GP-UCB and TS often practically suffer from manual hyperparameter tuning and over-exploration issues, respectively. Therefore, we analyze yet another AF called a probability of improvement from the maximum of a sample path (PIMS). We show that PIMS achieves the tighter BCR bound and avoids the hyperparameter tuning, unlike GP-UCB. Furthermore, we demonstrate a wide range of experiments, focusing on the effectiveness of PIMS that mitigates the practical issues of GP-UCB and TS.
Best subset selection is considered the `gold standard' for many sparse learning problems. A variety of optimization techniques have been proposed to attack this non-smooth non-convex problem. In this paper, we investigate the dual forms of a family of $\ell_0$-regularized problems. An efficient primal-dual algorithm is developed based on the primal and dual problem structures. By leveraging the dual range estimation along with the incremental strategy, our algorithm potentially reduces redundant computation and improves the solutions of best subset selection. Theoretical analysis and experiments on synthetic and real-world datasets validate the efficiency and statistical properties of the proposed solutions.
Deep priors have emerged as potent methods in hyperspectral image (HSI) reconstruction. While most methods emphasize space-domain learning using image space priors like non-local similarity, frequency-domain learning using image frequency priors remains neglected, limiting the reconstruction capability of networks. In this paper, we first propose a Hyperspectral Frequency Correlation (HFC) prior rooted in in-depth statistical frequency analyses of existent HSI datasets. Leveraging the HFC prior, we subsequently establish the frequency domain learning composed of a Spectral-wise self-Attention of Frequency (SAF) and a Spectral-spatial Interaction of Frequency (SIF) targeting low-frequency and high-frequency components, respectively. The outputs of SAF and SIF are adaptively merged by a learnable gating filter, thus achieving a thorough exploitation of image frequency priors. Integrating the frequency domain learning and the existing space domain learning, we finally develop the Correlation-driven Mixing Domains Transformer (CMDT) for HSI reconstruction. Extensive experiments highlight that our method surpasses various state-of-the-art (SOTA) methods in reconstruction quality and computational efficiency.
We study the geometry of conditional optimal transport (COT) and prove a dynamical formulation which generalizes the Benamou-Brenier Theorem. Equipped with these tools, we propose a simulation-free flow-based method for conditional generative modeling. Our method couples an arbitrary source distribution to a specified target distribution through a triangular COT plan, and a conditional generative model is obtained by approximating the geodesic path of measures induced by this COT plan. Our theory and methods are applicable in infinite-dimensional settings, making them well suited for a wide class of Bayesian inverse problems. Empirically, we demonstrate that our method is competitive on several challenging conditional generation tasks, including an infinite-dimensional inverse problem.
Recent advances in deep learning have led to a data-centric intelligence i.e. artificially intelligent models unlocking the potential to ingest a large amount of data and be really good at performing digital tasks such as text-to-image generation, machine-human conversation, and image recognition. This thesis covers the topic of learning with structured inductive bias and priors to design approaches and algorithms unlocking the potential of principle-centric intelligence. Prior knowledge (priors for short), often available in terms of past experience as well as assumptions of how the world works, helps the autonomous agent generalize better and adapt their behavior based on past experience. In this thesis, I demonstrate the use of prior knowledge in three different robotics perception problems. 1. object-centric 3D reconstruction, 2. vision and language for decision-making, and 3. 3D scene understanding. To solve these challenging problems, I propose various sources of prior knowledge including 1. geometry and appearance priors from synthetic data, 2. modularity and semantic map priors and 3. semantic, structural, and contextual priors. I study these priors for solving robotics 3D perception tasks and propose ways to efficiently encode them in deep learning models. Some priors are used to warm-start the network for transfer learning, others are used as hard constraints to restrict the action space of robotics agents. While classical techniques are brittle and fail to generalize to unseen scenarios and data-centric approaches require a large amount of labeled data, this thesis aims to build intelligent agents which require very-less real-world data or data acquired only from simulation to generalize to highly dynamic and cluttered environments in novel simulations (i.e. sim2sim) or real-world unseen environments (i.e. sim2real) for a holistic scene understanding of the 3D world.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.