亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Journals and conferences worry that peer reviews assisted by artificial intelligence (AI), in particular, large language models (LLMs), may negatively influence the validity and fairness of the peer-review system, a cornerstone of modern science. In this work, we address this concern with a quasi-experimental study of the prevalence and impact of AI-assisted peer reviews in the context of the 2024 International Conference on Learning Representations (ICLR), a large and prestigious machine-learning conference. Our contributions are threefold. Firstly, we obtain a lower bound for the prevalence of AI-assisted reviews at ICLR 2024 using the GPTZero LLM detector, estimating that at least $15.8\%$ of reviews were written with AI assistance. Secondly, we estimate the impact of AI-assisted reviews on submission scores. Considering pairs of reviews with different scores assigned to the same paper, we find that in $53.4\%$ of pairs the AI-assisted review scores higher than the human review ($p = 0.002$; relative difference in probability of scoring higher: $+14.4\%$ in favor of AI-assisted reviews). Thirdly, we assess the impact of receiving an AI-assisted peer review on submission acceptance. In a matched study, submissions near the acceptance threshold that received an AI-assisted peer review were $4.9$ percentage points ($p = 0.024$) more likely to be accepted than submissions that did not. Overall, we show that AI-assisted reviews are consequential to the peer-review process and offer a discussion on future implications of current trends

相關內容

Mainstream approaches to aligning large language models (LLMs) heavily rely on human preference data, particularly when models require periodic updates. The standard process for iterative alignment of LLMs involves collecting new human feedback for each update. However, the data collection process is costly and challenging to scale. To address this issue, we introduce the "TS-Align" framework, which fine-tunes a policy model using pairwise feedback data automatically mined from its outputs. This automatic mining process is efficiently accomplished through the collaboration between a large-scale teacher model and a small-scale student model. The policy fine-tuning process can be iteratively repeated using on-policy generations within our proposed teacher-student collaborative framework. Through extensive experiments, we demonstrate that our final aligned policy outperforms the base policy model with an average win rate of 69.7% across seven conversational or instruction-following datasets. Furthermore, we show that the ranking capability of the teacher is effectively distilled into the student through our pipeline, resulting in a small-scale yet effective reward model for policy model alignment.

Automatic pronunciation assessment (APA) manages to evaluate the pronunciation proficiency of a second language (L2) learner in a target language. Existing efforts typically draw on regression models for proficiency score prediction, where the models are trained to estimate target values without explicitly accounting for phoneme-awareness in the feature space. In this paper, we propose a contrastive phonemic ordinal regularizer (ConPCO) tailored for regression-based APA models to generate more phoneme-discriminative features while considering the ordinal relationships among the regression targets. The proposed ConPCO first aligns the phoneme representations of an APA model and textual embeddings of phonetic transcriptions via contrastive learning. Afterward, the phoneme characteristics are retained by regulating the distances between inter- and intra-phoneme categories in the feature space while allowing for the ordinal relationships among the output targets. We further design and develop a hierarchical APA model to evaluate the effectiveness of our method. Extensive experiments conducted on the speechocean762 benchmark dataset suggest the feasibility and efficacy of our approach in relation to some cutting-edge baselines.

Large language models (LLMs) are possessed of numerous beneficial capabilities, yet their potential inclination harbors unpredictable risks that may materialize in the future. We hence propose CRiskEval, a Chinese dataset meticulously designed for gauging the risk proclivities inherent in LLMs such as resource acquisition and malicious coordination, as part of efforts for proactive preparedness. To curate CRiskEval, we define a new risk taxonomy with 7 types of frontier risks and 4 safety levels, including extremely hazardous,moderately hazardous, neutral and safe. We follow the philosophy of tendency evaluation to empirically measure the stated desire of LLMs via fine-grained multiple-choice question answering. The dataset consists of 14,888 questions that simulate scenarios related to predefined 7 types of frontier risks. Each question is accompanied with 4 answer choices that state opinions or behavioral tendencies corresponding to the question. All answer choices are manually annotated with one of the defined risk levels so that we can easily build a fine-grained frontier risk profile for each assessed LLM. Extensive evaluation with CRiskEval on a spectrum of prevalent Chinese LLMs has unveiled a striking revelation: most models exhibit risk tendencies of more than 40% (weighted tendency to the four risk levels). Furthermore, a subtle increase in the model's inclination toward urgent self-sustainability, power seeking and other dangerous goals becomes evident as the size of models increase. To promote further research on the frontier risk evaluation of LLMs, we publicly release our dataset at //github.com/lingshi6565/Risk_eval.

Long-form generations from large language models (LLMs) contain a mix of factual and non-factual claims, making evaluating factuality difficult. Prior works evaluate the factuality of a long paragraph by decomposing it into multiple facts, verifying those facts independently, and aggregating the results. Such methods assume that combining factual claims forms a factual paragraph. The above assumption can be violated: we show that strong open-source models like Llama-chat can generate paragraphs that contain verifiable facts, but the facts are combined into a non-factual paragraph due to entity ambiguity. We further reveal that existing factuality metrics, including FActScore and citation recall, cannot properly evaluate these non-factual paragraphs and overestimate their factuality. To address this, we introduce an enhanced metric, D-FActScore, specifically designed for content with ambiguous entities. We evaluate the D-FActScores of people biographies generated by retrieval-augmented LLMs. We show that D-FActScore can better assess the factuality of paragraphs with entity ambiguity than FActScore. We also find that four widely used open-source LLMs tend to mix information of distinct entities to form non-factual paragraphs, making their D-FActScore much lower than FActScore by over 10%.

This paper presents a systematic defense of large language model (LLM) hallucinations or 'confabulations' as a potential resource instead of a categorically negative pitfall. The standard view is that confabulations are inherently problematic and AI research should eliminate this flaw. In this paper, we argue and empirically demonstrate that measurable semantic characteristics of LLM confabulations mirror a human propensity to utilize increased narrativity as a cognitive resource for sense-making and communication. In other words, it has potential value. Specifically, we analyze popular hallucination benchmarks and reveal that hallucinated outputs display increased levels of narrativity and semantic coherence relative to veridical outputs. This finding reveals a tension in our usually dismissive understandings of confabulation. It suggests, counter-intuitively, that the tendency for LLMs to confabulate may be intimately associated with a positive capacity for coherent narrative-text generation.

The continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world. Existing methods devise the learning module to acquire task-specific knowledge with parameter-efficient tuning (PET) block and the selection module to pick out the corresponding one for the testing input, aiming at handling the challenges of catastrophic forgetting and knowledge transfer in CL. However, these methods tend to address only one of the challenges, ignoring the potential of aligning the two modules to effectively address catastrophic forgetting and knowledge transfer simultaneously. To this end, we propose a novel Shared Attention Framework (SAPT), to align the PET learning and selection via the Shared Attentive Learning \& Selection module. Extensive Experiments on two CL benchmarks demonstrate the superiority of SAPT. Moreover, SAPT consistently demonstrates its superiority when we scale it to different model sizes (from 770M to 13B), different model architectures (T5 and LLaMA-2) and unseen tasks.

Large language models (LLMs) have demonstrated exceptional reasoning capabilities, enabling them to solve various complex problems. Recently, this ability has been applied to the paradigm of tool learning. Tool learning involves providing examples of tool usage and their corresponding functions, allowing LLMs to formulate plans and demonstrate the process of invoking and executing each tool. LLMs can address tasks that they cannot complete independently, thereby enhancing their potential across different tasks. However, this approach faces two key challenges. First, redundant error correction leads to unstable planning and long execution time. Additionally, designing a correct plan among multiple tools is also a challenge in tool learning. To address these issues, we propose Tool-Planner, a task-processing framework based on toolkits. Tool-Planner groups tools based on the API functions with the same function into a toolkit and allows LLMs to implement planning across the various toolkits. When a tool error occurs, the language model can reselect and adjust tools based on the toolkit. Experiments show that our approach demonstrates a high pass and win rate across different datasets and optimizes the planning scheme for tool learning in models such as GPT-4 and Claude 3, showcasing the potential of our method.

The emergence of large language models (LLMs) relies heavily on distributed training strategies, among which pipeline parallelism plays a crucial role. As LLMs' training sequence length extends to 32k or even 128k, the current pipeline parallel methods face severe bottlenecks, including high memory footprints and substantial pipeline bubbles, greatly hindering model scalability and training throughput. To enhance memory efficiency and training throughput, in this work, we introduce an efficient sequence-level one-forward-one-backward (1F1B) pipeline scheduling method tailored for training LLMs on long sequences named Seq1F1B. Seq1F1B decomposes batch-level schedulable units into finer sequence-level units, reducing bubble size and memory footprint. Considering that Seq1F1B may produce slight extra bubbles if sequences are split evenly, we design a computation-wise strategy to partition input sequences and mitigate this side effect. Compared to competitive pipeline baseline methods such as Megatron 1F1B pipeline parallelism, our method achieves higher training throughput with less memory footprint. Notably, Seq1F1B efficiently trains a LLM with 30B parameters on sequences up to 64k using 64 NVIDIA A100 GPUs without recomputation strategies, a feat unachievable with existing methods. Our source code is based on Megatron-LM, and now is avaiable at: //github.com/MayDomine/Seq1F1B.git.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司