The O'Sullivan penalized splines approach is a popular frequentist approach for nonparametric regression. Thereby, the unknown regression function is expanded in a rich spline basis and a roughness penalty based on the integrated squared $q$th derivative is used for regularization. While the asymptotic properties of O'Sullivan penalized splines in a frequentist setting have been investigated extensively, the theoretical understanding of the Bayesian counterpart has been missing so far. In this paper, we close this gap and study the asymptotics of the Bayesian counterpart of the frequentist O-splines approach. We derive sufficient conditions for the entire posterior distribution to concentrate around the true regression function at near optimal rate. Our results show that posterior concentration at near optimal rate can be achieved with a faster rate for the number of spline knots than the slow regression spline rate that is commonly being used. Furthermore, posterior concentration at near optimal rate can be achieved with several different hyperpriors on the smoothing variance such as a Gamma and a Weibull hyperprior.
In extreme value theory, the extremal variogram is a summary of the tail dependence of a random vector. It is a central ingredient for learning extremal tree structures (arXiv:2012.06179) and has close connections to the estimation of H\"usler-Reiss models and extremal graphical models (arXiv:1812.01734). This note presents concentration results for the empirical version of the extremal variogram under general domain of attraction conditions. The results play a role in extending the findings in arXiv:2012.06179 to increasing dimensions. The note is also the first building block for penalized estimation of sparse H\"usler-Reiss graphical models.
Several works in implicit and explicit generative modeling empirically observed that feature-learning discriminators outperform fixed-kernel discriminators in terms of the sample quality of the models. We provide separation results between probability metrics with fixed-kernel and feature-learning discriminators using the function classes $\mathcal{F}_2$ and $\mathcal{F}_1$ respectively, which were developed to study overparametrized two-layer neural networks. In particular, we construct pairs of distributions over hyper-spheres that can not be discriminated by fixed kernel $(\mathcal{F}_2)$ integral probability metric (IPM) and Stein discrepancy (SD) in high dimensions, but that can be discriminated by their feature learning ($\mathcal{F}_1$) counterparts. To further study the separation we provide links between the $\mathcal{F}_1$ and $\mathcal{F}_2$ IPMs with sliced Wasserstein distances. Our work suggests that fixed-kernel discriminators perform worse than their feature learning counterparts because their corresponding metrics are weaker.
This paper considers the problem of estimating high dimensional Laplacian constrained precision matrices by minimizing Stein's loss. We obtain a necessary and sufficient condition for existence of this estimator, that boils down to checking whether a certain data dependent graph is connected. We also prove consistency in the high dimensional setting under the symmetryzed Stein loss. We show that the error rate does not depend on the graph sparsity, or other type of structure, and that Laplacian constraints are sufficient for high dimensional consistency. Our proofs exploit properties of graph Laplacians, and a characterization of the proposed estimator based on effective graph resistances. We validate our theoretical claims with numerical experiments.
COVID-19 incidence is analyzed at the provinces of some Spanish Communities during the period February-October, 2020. Two infinite-dimensional regression approaches are tested. The first one is implemented in the regression framework introduced in Ruiz-Medina, Miranda and Espejo (2019). Specifically, a bayesian framework is adopted in the estimation of the pure point spectrum of the temporal autocorrelation operator, characterizing the second-order structure of a surface sequence. The second approach is formulated in the context of spatial curve regression. A nonparametric estimator of the spectral density operator, based on the spatial periodogram operator, is computed to approximate the spatial correlation between curves. Dimension reduction is achieved by projection onto the empirical eigenvectors of the long-run spatial covariance operator. Cross-validation procedures are implemented to test the performance of the two functional regression approaches.
We analyze the problem of simultaneous support recovery and estimation of the coefficient vector ($\beta^*$) in a linear model with independent and identically distributed Normal errors. We apply the penalised least square estimator of $\beta^*$ based on non-linear penalties of stochastic gates (STG) [YLNK20] to estimate the coefficients. Considering Gaussian design matrices we show that under reasonable conditions on dimension and sparsity of $\beta^*$ the STG based estimator converges to the true data generating coefficient vector and also detects its support set with high probability. We propose a new projection based algorithm for the linear models setup to improve upon the existing STG estimator that was originally designed for general non-linear models. Our new procedure outperforms many classical estimators for sparse support recovery in synthetic data analysis.
Solving the convergence issues of Generative Adversarial Networks (GANs) is one of the most outstanding problems in generative models. In this work, we propose a novel activation function to be used as output of the generator agent. This activation function is based on the Smirnov probabilistic transformation and it is specifically designed to improve the quality of the generated data. In sharp contrast with previous works, our activation function provides a more general approach that deals not only with the replication of categorical variables but with any type of data distribution (continuous or discrete). Moreover, our activation function is derivable and therefore, it can be seamlessly integrated in the backpropagation computations during the GAN training processes. To validate this approach, we evaluate our proposal against two different data sets: a) an artificially rendered data set containing a mixture of discrete and continuous variables, and b) a real data set of flow-based network traffic data containing both normal connections and cryptomining attacks. To evaluate the fidelity of the generated data, we analyze both their results in terms of quality measures of statistical nature and also regarding the use of these synthetic data to feed a nested machine learning-based classifier. The experimental results evince a clear outperformance of the GAN network tuned with this new activation function with respect to both a na\"ive mean-based generator and a standard GAN. The quality of the data is so high that the generated data can fully substitute real data for training the nested classifier without a fall in the obtained accuracy. This result encourages the use of GANs to produce high-quality synthetic data that are applicable in scenarios in which data privacy must be guaranteed.
A Bayesian treatment can mitigate overconfidence in ReLU nets around the training data. But far away from them, ReLU Bayesian neural networks (BNNs) can still underestimate uncertainty and thus be asymptotically overconfident. This issue arises since the output variance of a BNN with finitely many features is quadratic in the distance from the data region. Meanwhile, Bayesian linear models with ReLU features converge, in the infinite-width limit, to a particular Gaussian process (GP) with a variance that grows cubically so that no asymptotic overconfidence can occur. While this may seem of mostly theoretical interest, in this work, we show that it can be used in practice to the benefit of BNNs. We extend finite ReLU BNNs with infinite ReLU features via the GP and show that the resulting model is asymptotically maximally uncertain far away from the data while the BNNs' predictive power is unaffected near the data. Although the resulting model approximates a full GP posterior, thanks to its structure, it can be applied \emph{post-hoc} to any pre-trained ReLU BNN at a low cost.
We consider online sequential decision problems where an agent must balance exploration and exploitation. We derive a set of Bayesian `optimistic' policies which, in the stochastic multi-armed bandit case, includes the Thompson sampling policy. We provide a new analysis showing that any algorithm producing policies in the optimistic set enjoys $\tilde O(\sqrt{AT})$ Bayesian regret for a problem with $A$ actions after $T$ rounds. We extend the regret analysis for optimistic policies to bilinear saddle-point problems which include zero-sum matrix games and constrained bandits as special cases. In this case we show that Thompson sampling can produce policies outside of the optimistic set and suffer linear regret in some instances. Finding a policy inside the optimistic set amounts to solving a convex optimization problem and we call the resulting algorithm `variational Bayesian optimistic sampling' (VBOS). The procedure works for any posteriors, \ie, it does not require the posterior to have any special properties, such as log-concavity, unimodality, or smoothness. The variational view of the problem has many useful properties, including the ability to tune the exploration-exploitation tradeoff, add regularization, incorporate constraints, and linearly parameterize the policy.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.