Deep learning (DL) applications are prevalent nowadays as they can help with multiple tasks. DL libraries are essential for building DL applications. Furthermore, DL operators are the important building blocks of the DL libraries, that compute the multi-dimensional data (tensors). Therefore, bugs in DL operators can have great impacts. Testing is a practical approach for detecting bugs in DL operators. In order to test DL operators effectively, it is essential that the test cases pass the input validity check and are able to reach the core function logic of the operators. Hence, extracting the input validation constraints is required for generating high-quality test cases. Existing techniques rely on either human effort or documentation of DL library APIs to extract the constraints. They cannot extract complex constraints and the extracted constraints may differ from the actual code implementation. To address the challenge, we propose ACETest, a technique to automatically extract input validation constraints from the code to build valid yet diverse test cases which can effectively unveil bugs in the core function logic of DL operators. For this purpose, ACETest can automatically identify the input validation code in DL operators, extract the related constraints and generate test cases according to the constraints. The experimental results on popular DL libraries, TensorFlow and PyTorch, demonstrate that ACETest can extract constraints with higher quality than state-of-the-art (SOTA) techniques. Moreover, ACETest is capable of extracting 96.4% more constraints and detecting 1.95 to 55 times more bugs than SOTA techniques. In total, we have used ACETest to detect 108 previously unknown bugs on TensorFlow and PyTorch, with 87 of them confirmed by the developers. Lastly, five of the bugs were assigned with CVE IDs due to their security impacts.
In this paper, we propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX. Existing AutoGPT-style techniques have inherent limitations, such as a heavy reliance on precise descriptions for decision-making, and the lack of a systematic approach to leverage try-and-fail procedures akin to traditional Reinforcement Learning (RL). REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance. This approach has the advantage of enabling the utilization of offline behaviors from logs and allowing seamless integration with existing foundation models while it does not require any model fine-tuning. Through comparative analysis with existing methods such as Chain-of-Thoughts(CoT) and Reasoning viA Planning(RAP), REX-based methods demonstrate comparable performance and, in certain cases, even surpass the results achieved by these existing techniques. Notably, REX-based methods exhibit remarkable reductions in execution time, enhancing their practical applicability across a diverse set of scenarios.
Off-policy Learning to Rank (LTR) aims to optimize a ranker from data collected by a deployed logging policy. However, existing off-policy learning to rank methods often make strong assumptions about how users generate the click data, i.e., the click model, and hence need to tailor their methods specifically under different click models. In this paper, we unified the ranking process under general stochastic click models as a Markov Decision Process (MDP), and the optimal ranking could be learned with offline reinforcement learning (RL) directly. Building upon this, we leverage offline RL techniques for off-policy LTR and propose the Click Model-Agnostic Unified Off-policy Learning to Rank (CUOLR) method, which could be easily applied to a wide range of click models. Through a dedicated formulation of the MDP, we show that offline RL algorithms can adapt to various click models without complex debiasing techniques and prior knowledge of the model. Results on various large-scale datasets demonstrate that CUOLR consistently outperforms the state-of-the-art off-policy learning to rank algorithms while maintaining consistency and robustness under different click models.
New systems employ Machine Learning to sift through large knowledge sources, creating flexible Large Language Models. These models discern context and predict sequential information in various communication forms. Generative AI, leveraging Transformers, generates textual or visual outputs mimicking human responses. It proposes one or multiple contextually feasible solutions for a user to contemplate. However, generative AI does not currently support traceability of ideas, a useful feature provided by search engines indicating origin of information. The narrative style of generative AI has gained positive reception. People learn from stories. Yet, early ChatGPT efforts had difficulty with truth, reference, calculations, and aspects like accurate maps. Current capabilities of referencing locations and linking to apps seem to be better catered by the link-centric search methods we've used for two decades. Deploying truly believable solutions extends beyond simulating contextual relevance as done by generative AI. Combining the creativity of generative AI with the provenance of internet sources in hybrid scenarios could enhance internet usage. Generative AI, viewed as drafts, stimulates thinking, offering alternative ideas for final versions or actions. Scenarios for information requests are considered. We discuss how generative AI can boost idea generation by eliminating human bias. We also describe how search can verify facts, logic, and context. The user evaluates these generated ideas for selection and usage. This paper introduces a system for knowledge workers, Generate And Search Test, enabling individuals to efficiently create solutions previously requiring top collaborations of experts.
Large language models (LLMs) have brought about significant transformations in human society. Among the crucial computations in LLMs, the softmax unit holds great importance. Its helps the model generating a probability distribution on potential subsequent words or phrases, considering a series of input words. By utilizing this distribution, the model selects the most probable next word or phrase, based on the assigned probabilities. The softmax unit assumes a vital function in LLM training as it facilitates learning from data through the adjustment of neural network weights and biases. With the development of the size of LLMs, computing the gradient becomes expensive. However, Zero-th Order method can approximately compute the gradient with only forward passes. In this paper, we present a Zero-th Order algorithm specifically tailored for Softmax optimization. We demonstrate the convergence of our algorithm, highlighting its effectiveness in efficiently computing gradients for large-scale LLMs. By leveraging the Zeroth-Order method, our work contributes to the advancement of optimization techniques in the context of complex language models.
This paper proposes a novel multi-agent reinforcement learning (MARL) method to learn multiple coordinated agents under directed acyclic graph (DAG) constraints. Unlike existing MARL approaches, our method explicitly exploits the DAG structure between agents to achieve more effective learning performance. Theoretically, we propose a novel surrogate value function based on a MARL model with synthetic rewards (MARLM-SR) and prove that it serves as a lower bound of the optimal value function. Computationally, we propose a practical training algorithm that exploits new notion of leader agent and reward generator and distributor agent to guide the decomposed follower agents to better explore the parameter space in environments with DAG constraints. Empirically, we exploit four DAG environments including a real-world scheduling for one of Intel's high volume packaging and test factory to benchmark our methods and show it outperforms the other non-DAG approaches.
The combination of Reinforcement Learning (RL) with deep learning has led to a series of impressive feats, with many believing (deep) RL provides a path towards generally capable agents. However, the success of RL agents is often highly sensitive to design choices in the training process, which may require tedious and error-prone manual tuning. This makes it challenging to use RL for new problems, while also limits its full potential. In many other areas of machine learning, AutoML has shown it is possible to automate such design choices and has also yielded promising initial results when applied to RL. However, Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL, that naturally produce a different set of methods. As such, AutoRL has been emerging as an important area of research in RL, providing promise in a variety of applications from RNA design to playing games such as Go. Given the diversity of methods and environments considered in RL, much of the research has been conducted in distinct subfields, ranging from meta-learning to evolution. In this survey we seek to unify the field of AutoRL, we provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.