This paper presents a mixture version of the method-of-moment unsupervised lexicon classification by an incorporation of a Dirichlet process.
Generative models have shown significant achievements in audio generation tasks. However, existing models struggle with complex and detailed prompts, leading to potential performance degradation. We hypothesize that this problem stems from the low quality and relatively small quantity of training data. In this work, we aim to create a large-scale audio dataset with rich captions for improving audio generation models. We develop an automated pipeline to generate detailed captions for audio-visual datasets by transforming predicted visual captions, audio captions, and tagging labels into comprehensive descriptions using a Large Language Model (LLM). We introduce Sound-VECaps, a dataset comprising 1.66M high-quality audio-caption pairs with enriched details including audio event orders, occurred places and environment information. We demonstrate that training with Sound-VECaps significantly enhances the capability of text-to-audio generation models to comprehend and generate audio from complex input prompts, improving overall system performance. Furthermore, we conduct ablation studies of Sound-VECaps across several audio-language tasks, suggesting its potential in advancing audio-text representation learning. Our dataset and models are available online.
This paper aims to construct optimal quaternary additive codes with non-integer dimensions. Firstly, we propose combinatorial constructions of quaternary additive constant-weight codes, alongside additive anticode construction. Subsequently, we propose generalized Construction X, which facilitates the construction of non-integer dimensional optimal additive codes from linear codes. Then, we construct ten classes of optimal quaternary non-integer dimensional additive codes through these two methods. As an application, we also determine the optimal additive $[n,3.5,n-t]_4$ codes for all $t$ with variable $n$, except for $t=6,7,12$.
The feedforward (FFW) layers in standard transformer architectures incur a linear increase in computational costs and activation memory as the hidden layer width grows. Sparse mixture-of-experts (MoE) architectures have emerged as a viable approach to address this issue by decoupling model size from computational cost. The recent discovery of the fine-grained MoE scaling law shows that higher granularity leads to better performance. However, existing MoE models are limited to a small number of experts due to computational and optimization challenges. This paper introduces PEER (parameter efficient expert retrieval), a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of tiny experts (over a million). Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off. By enabling efficient utilization of a massive number of experts, PEER unlocks the potential for further scaling of transformer models while maintaining computational efficiency.
This paper presents a Genetic Algorithm (GA) designed to reconfigure a large group of modular Unmanned Aerial Vehicles (UAVs), each with different weights and inertia parameters, into an over-actuated flight structure with improved dynamic properties. Previous research efforts either utilized expert knowledge to design flight structures for a specific task or relied on enumeration-based algorithms that required extensive computation to find an optimal one. However, both approaches encounter challenges in accommodating the heterogeneity among modules. Our GA addresses these challenges by incorporating the complexities of over-actuation and dynamic properties into its formulation. Additionally, we employ a tree representation and a vector representation to describe flight structures, facilitating efficient crossover operations and fitness evaluations within the GA framework, respectively. Using cubic modular quadcopters capable of functioning as omni-directional thrust generators, we validate that the proposed approach can (i) adeptly identify suboptimal configurations ensuring over-actuation while ensuring trajectory tracking accuracy and (ii) significantly reduce computational costs compared to traditional enumeration-based methods.
This paper provides a comprehensive overview of recent advancements in autonomous electric vehicles (AEVs) within the specified region. It elaborates on the progress and comparative analysis of diverse subsystems, including energy storage, cell balancing for battery systems, vehicle charger layouts, electric vehicle motor mechanisms, and braking systems. Furthermore, this paper showcases several prototype autonomous electric vehicles as conclusive study findings.
The automatic classification of animal sounds presents an enduring challenge in bioacoustics, owing to the diverse statistical properties of sound signals, variations in recording equipment, and prevalent low Signal-to-Noise Ratio (SNR) conditions. Deep learning models like Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) have excelled in human speech recognition but have not been effectively tailored to the intricate nature of animal sounds, which exhibit substantial diversity even within the same domain. We propose an automated classification framework applicable to general animal sound classification. Our approach first optimizes audio features from Mel-frequency cepstral coefficients (MFCC) including feature rearrangement and feature reduction. It then uses the optimized features for the deep learning model, i.e., an attention-based Bidirectional LSTM (Bi-LSTM), to extract deep semantic features for sound classification. We also contribute an animal sound benchmark dataset encompassing oceanic animals and birds1. Extensive experimentation with real-world datasets demonstrates that our approach consistently outperforms baseline methods by over 25% in precision, recall, and accuracy, promising advancements in animal sound classification.
Vortices and their analysis play a critical role in the understanding of complex phenomena in turbulent flows. Traditional vortex extraction methods, notably region-based techniques, often overlook the entanglement phenomenon, resulting in the inclusion of multiple vortices within a single extracted region. Their separation is necessary for quantifying different types of vortices and their statistics. In this study, we propose a novel vortex separation method that extends the conventional contour tree-based segmentation approach with an additional step termed "layering". Upon extracting a vortical region using specified vortex criteria (e.g., $\lambda_2$), we initially establish topological segmentation based on the contour tree, followed by the layering process to allocate appropriate segmentation IDs to unsegmented cells, thus separating individual vortices within the region. However, these regions may still suffer from inaccurate splits, which we address statistically by leveraging the continuity of vorticity lines across the split boundaries. Our findings demonstrate a significant improvement in both the separation of vortices and the mitigation of inaccurate splits compared to prior methods.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.