亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Functional regression analysis is an established tool for many contemporary scientific applications. Regression problems involving large and complex data sets are ubiquitous, and feature selection is crucial for avoiding overfitting and achieving accurate predictions. We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse high dimensional function-on-function regression problem, and we show how to extend it to the scalar-on-function framework. Our method, called FAStEN, combines functional data, optimization, and machine learning techniques to perform feature selection and parameter estimation simultaneously. We exploit the properties of Functional Principal Components and the sparsity inherent to the Dual Augmented Lagrangian problem to significantly reduce computational cost, and we introduce an adaptive scheme to improve selection accuracy. In addition, we derive asymptotic oracle properties, which guarantee estimation and selection consistency for the proposed FAStEN estimator. Through an extensive simulation study, we benchmark our approach to the best existing competitors and demonstrate a massive gain in terms of CPU time and selection performance, without sacrificing the quality of the coefficients' estimation. The theoretical derivations and the simulation study provide a strong motivation for our approach. Finally, we present an application to brain fMRI data from the AOMIC PIOP1 study. Complete FAStEN code is provided at //github.com/IBM/funGCN.

相關內容

特征選擇( Feature Selection )也稱特征子集選擇( Feature Subset Selection , FSS ),或屬性選擇( Attribute Selection )。是指從已有的M個特征(Feature)中選擇N個特征使得系統的特定指標最優化,是從原始特征中選擇出一些最有效特征以降低數據集維度的過程,是提高學習算法性能的一個重要手段,也是模式識別中關鍵的數據預處理步驟。對于一個學習算法來說,好的學習樣本是訓練模型的關鍵。

Anomaly synthesis is a crucial approach to augment abnormal data for advancing anomaly inspection. Based on the knowledge from the large-scale pre-training, existing text-to-image anomaly synthesis methods predominantly focus on textual information or coarse-aligned visual features to guide the entire generation process. However, these methods often lack sufficient descriptors to capture the complicated characteristics of realistic anomalies (e.g., the fine-grained visual pattern of anomalies), limiting the realism and generalization of the generation process. To this end, we propose a novel anomaly synthesis framework called AnomalyControl to learn cross-modal semantic features as guidance signals, which could encode the generalized anomaly cues from text-image reference prompts and improve the realism of synthesized abnormal samples. Specifically, AnomalyControl adopts a flexible and non-matching prompt pair (i.e., a text-image reference prompt and a targeted text prompt), where a Cross-modal Semantic Modeling (CSM) module is designed to extract cross-modal semantic features from the textual and visual descriptors. Then, an Anomaly-Semantic Enhanced Attention (ASEA) mechanism is formulated to allow CSM to focus on the specific visual patterns of the anomaly, thus enhancing the realism and contextual relevance of the generated anomaly features. Treating cross-modal semantic features as the prior, a Semantic Guided Adapter (SGA) is designed to encode effective guidance signals for the adequate and controllable synthesis process. Extensive experiments indicate that AnomalyControl can achieve state-of-the-art results in anomaly synthesis compared with existing methods while exhibiting superior performance for downstream tasks.

We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that excel over the state-of-the-art in motion quality and diversity.

The vehicular Metaverse represents an emerging paradigm that merges vehicular communications with virtual environments, integrating real-world data to enhance in-vehicle services. However, this integration faces critical security challenges, particularly in the data collection layer where malicious sensing IoT (SIoT) devices can compromise service quality through data poisoning attacks. The security aspects of the Metaverse services should be well addressed both when creating the digital twins of the physical systems and when delivering the virtual service to the vehicular Metaverse users (VMUs). This paper introduces vehicular Metaverse guard (VMGuard), a novel four-layer security framework that protects vehicular Metaverse systems from data poisoning attacks. Specifically, when the virtual service providers (VSPs) collect data about physical environment through SIoT devices in the field, the delivered content might be tampered. Malicious SIoT devices with moral hazard might have private incentives to provide poisoned data to the VSP to degrade the service quality (QoS) and user experience (QoE) of the VMUs. The proposed framework implements a reputation-based incentive mechanism that leverages user feedback and subjective logic modeling to assess the trustworthiness of participating SIoT devices. More precisely, the framework entails the use of reputation scores assigned to participating SIoT devices based on their historical engagements with the VSPs. Ultimately, we validate our proposed model using comprehensive simulations. Our key findings indicate that our mechanism effectively prevents the initiation of poisoning attacks by malicious SIoT devices. Additionally, our system ensures that reliable SIoT devices, previously missclassified, are not barred from participating in future rounds of the market.

Assessing the importance of individual training samples is a key challenge in machine learning. Traditional approaches retrain models with and without specific samples, which is computationally expensive and ignores dependencies between data points. We introduce LossVal, an efficient data valuation method that computes importance scores during neural network training by embedding a self-weighting mechanism into loss functions like cross-entropy and mean squared error. LossVal reduces computational costs, making it suitable for large datasets and practical applications. Experiments on classification and regression tasks across multiple datasets show that LossVal effectively identifies noisy samples and is able to distinguish helpful from harmful samples. We examine the gradient calculation of LossVal to highlight its advantages. The source code is available at: //github.com/twibiral/LossVal

The recent advances in deep learning (DL) have been accelerated by access to large-scale data and compute. These large-scale resources have been used to train progressively larger models which are resource intensive in terms of compute, data, energy, and carbon emissions. These costs are becoming a new type of entry barrier to researchers and practitioners with limited access to resources at such scale, particularly in the Global South. In this work, we take a comprehensive look at the landscape of existing DL models for medical image analysis tasks and demonstrate their usefulness in settings where resources are limited. To account for the resource consumption of DL models, we introduce a novel measure to estimate the performance per resource unit, which we call the PePR score. Using a diverse family of 131 unique DL architectures (spanning 1M to 130M trainable parameters) and three medical image datasets, we capture trends about the performance-resource trade-offs. In applications like medical image analysis, we argue that small-scale, specialized models are better than striving for large-scale models. Furthermore, we show that using existing pretrained models that are fine-tuned on new data can significantly reduce the computational resources and data required compared to training models from scratch. We hope this work will encourage the community to focus on improving AI equity by developing methods and models with smaller resource footprints.

The rapid evolution of programming languages and software systems has necessitated the implementation of multilingual and scalable clone detection tools. However, it is difficult to achieve the above requirements at the same time. Most existing tools only focus on one challenge. In this work, we propose TGMM, a tree and GPU-based tool for multilingual and multi-granularity code clone detection. By generating parse trees based on user-provided grammar files, TGMM can extract code blocks at a specified granularity and detect Type-3 clones efficiently. In order to show the performance of TGMM, we compare it with seven state-of-the-art tools in terms of recall, precision, and execution time. TGMM ranks first in execution time and precision, while its recall is comparable to the others. Moreover, we analyzed the language extensibility of TGMM across 30 mainstream programming languages. Out of these, a total of 25 languages were supported, while the remaining five currently lack the necessary grammar files. Finally, we analyzed the clone characteristics of nine popular languages at five common granularities, hoping to inspire future researchers. The source code of TGMM is available at: //github.com/TGMM24/TGMM.git.

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司