Recurrent neural networks and Transformers have recently dominated most applications in hyperspectral (HS) imaging, owing to their capability to capture long-range dependencies from spectrum sequences. However, despite the success of these sequential architectures, the non-ignorable inefficiency caused by either difficulty in parallelization or computationally prohibitive attention still hinders their practicality, especially for large-scale observation in remote sensing scenarios. To address this issue, we herein propose SpectralMamba -- a novel state space model incorporated efficient deep learning framework for HS image classification. SpectralMamba features the simplified but adequate modeling of HS data dynamics at two levels. First, in spatial-spectral space, a dynamical mask is learned by efficient convolutions to simultaneously encode spatial regularity and spectral peculiarity, thus attenuating the spectral variability and confusion in discriminative representation learning. Second, the merged spectrum can then be efficiently operated in the hidden state space with all parameters learned input-dependent, yielding selectively focused responses without reliance on redundant attention or imparallelizable recurrence. To explore the room for further computational downsizing, a piece-wise scanning mechanism is employed in-between, transferring approximately continuous spectrum into sequences with squeezed length while maintaining short- and long-term contextual profiles among hundreds of bands. Through extensive experiments on four benchmark HS datasets acquired by satellite-, aircraft-, and UAV-borne imagers, SpectralMamba surprisingly creates promising win-wins from both performance and efficiency perspectives.
Video prediction, predicting future frames from the previous ones, has broad applications such as autonomous driving and weather forecasting. Existing state-of-the-art methods typically focus on extracting either spatial, temporal, or spatiotemporal features from videos. Different feature focuses, resulting from different network architectures, may make the resultant models excel at some video prediction tasks but perform poorly on others. Towards a more generic video prediction solution, we explicitly model these features in a unified encoder-decoder framework and propose a novel simple alternating Mixer (SIAM). The novelty of SIAM lies in the design of dimension alternating mixing (DaMi) blocks, which can model spatial, temporal, and spatiotemporal features through alternating the dimensions of the feature maps. Extensive experimental results demonstrate the superior performance of the proposed SIAM on four benchmark video datasets covering both synthetic and real-world scenarios.
By harnessing the capabilities of large language models (LLMs), recent large multimodal models (LMMs) have shown remarkable versatility in open-world multimodal understanding. Nevertheless, they are usually parameter-heavy and computation-intensive, thus hindering their applicability in resource-constrained scenarios. To this end, several lightweight LMMs have been proposed successively to maximize the capabilities under constrained scale (e.g., 3B). Despite the encouraging results achieved by these methods, most of them only focus on one or two aspects of the design space, and the key design choices that influence model capability have not yet been thoroughly investigated. In this paper, we conduct a systematic study for lightweight LMMs from the aspects of model architecture, training strategy, and training data. Based on our findings, we obtain Imp -- a family of highly capable LMMs at the 2B-4B scales. Notably, our Imp-3B model steadily outperforms all the existing lightweight LMMs of similar size, and even surpasses the state-of-the-art LMMs at the 13B scale. With low-bit quantization and resolution reduction techniques, our Imp model can be deployed on a Qualcomm Snapdragon 8Gen3 mobile chip with a high inference speed of about 13 tokens/s.
There has been a significant research interest in employing large language models to empower intelligent robots with complex reasoning. Existing work focuses on harnessing their abilities to reason about the histories of their actions and observations. In this paper, we explore a new dimension in which large language models may benefit robotics planning. In particular, we propose Statler, a framework in which large language models are prompted to maintain an estimate of the world state, which are often unobservable, and track its transition as new actions are taken. Our framework then conditions each action on the estimate of the current world state. Despite being conceptually simple, our Statler framework significantly outperforms strong competing methods (e.g., Code-as-Policies) on several robot planning tasks. Additionally, it has the potential advantage of scaling up to more challenging long-horizon planning tasks.
The possibilities of robot control have multiplied across various domains through the application of deep reinforcement learning. To overcome safety and sampling efficiency issues, deep reinforcement learning models can be trained in a simulation environment, allowing for faster iteration cycles. This can be enhanced further by parallelizing the training process using GPUs. NVIDIA's open-source robot learning framework Orbit leverages this potential by wrapping tensor-based reinforcement learning libraries for high parallelism and building upon Isaac Sim for its simulations. We contribute a detailed description of the implementation of a benchmark reinforcement learning task, namely box pushing, using Orbit. Additionally, we benchmark the performance of our implementation in comparison to a CPU-based implementation and report the performance metrics. Finally, we tune the hyper parameters of our implementation and show that we can generate significantly more samples in the same amount of time by using Orbit.
Effective attention modules have played a crucial role in the success of Transformer-based large language models (LLMs), but the quadratic time and memory complexities of these attention modules also pose a challenge when processing long sequences. One potential solution for the long sequence problem is to utilize distributed clusters to parallelize the computation of attention modules across multiple devices (e.g., GPUs). However, adopting a distributed approach inevitably introduces extra memory overheads to store local attention results and incurs additional communication costs to aggregate local results into global ones. In this paper, we propose a distributed attention framework named ``BurstAttention'' to optimize memory access and communication operations at both the global cluster and local device levels. In our experiments, we compare BurstAttention with other competitive distributed attention solutions for long sequence processing. The experimental results under different length settings demonstrate that BurstAttention offers significant advantages for processing long sequences compared with these competitive baselines, reducing 40% communication overheads and achieving 1.37 X speedup during training 128K sequence length on 32 X A100.
Benchmarks are among the main drivers of progress in software engineering research. However, many current benchmarks are limited by inadequate system oracles and sparse unit tests. Our Tests4Py benchmark, derived from the BugsInPy benchmark, addresses these limitations. It includes 73 bugs from seven real-world Python applications and six bugs from example programs. Each subject in Tests4Py is equipped with an oracle for verifying functional correctness and supports both system and unit test generation. This allows for comprehensive qualitative studies and extensive evaluations, making Tests4Py a cutting-edge benchmark for research in test generation, debugging, and automatic program repair.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.