亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new approach based on the Personalized Federated Learning algorithm MeritFed that can be applied to Natural Language Tasks with heterogeneous data. We evaluate it on the Low-Resource Machine Translation task, using the dataset from the Large-Scale Multilingual Machine Translation Shared Task (Small Track #2) and the subset of Sami languages from the multilingual benchmark for Finno-Ugric languages. In addition to its effectiveness, MeritFed is also highly interpretable, as it can be applied to track the impact of each language used for training. Our analysis reveals that target dataset size affects weight distribution across auxiliary languages, that unrelated languages do not interfere with the training, and auxiliary optimizer parameters have minimal impact. Our approach is easy to apply with a few lines of code, and we provide scripts for reproducing the experiments at //github.com/VityaVitalich/MeritFed

相關內容

機器翻譯(Machine Translation)涵蓋計算語言學和語言工程的所有分支,包含多語言方面。特色論文涵蓋理論,描述或計算方面的任何下列主題:雙語和多語語料庫的編寫和使用,計算機輔助語言教學,非羅馬字符集的計算含義,連接主義翻譯方法,對比語言學等。 官網地址:

We propose a metaheuristic algorithm enhanced with feature-based guidance that is designed to solve the Capacitated Vehicle Routing Problem (CVRP). To formulate the proposed guidance, we developed and explained a supervised Machine Learning (ML) model, that is used to formulate the guidance and control the diversity of the solution during the optimization process. We propose a metaheuristic algorithm combining neighborhood search and a novel mechanism of hybrid split and path relinking to implement the proposed guidance. The proposed guidance has proven to give a statistically significant improvement to the proposed metaheuristic algorithm when solving CVRP. Moreover, the proposed guided metaheuristic is also capable of producing competitive solutions among state-of-the-art metaheuristic algorithms.

The motivation for this paper is to detect when an irreducible projective variety V is not toric. We do this by analyzing a Lie group and a Lie algebra associated to V. If the dimension of V is strictly less than the dimension of the above mentioned objects, then V is not a toric variety. We provide an algorithm to compute the Lie algebra of an irreducible variety and use it to provide examples of non-toric statistical models in algebraic statistics.

Federated Learning (FL) in the Internet of Things (IoT) environments can enhance machine learning by utilising decentralised data, but at the same time, it might introduce significant privacy and security concerns due to the constrained nature of IoT devices. This represents a research challenge that we aim to address in this paper. We systematically analysed recent literature to identify privacy threats in FL within IoT environments, and evaluate the defensive measures that can be employed to mitigate these threats. Using a Systematic Literature Review (SLR) approach, we searched five publication databases (Scopus, IEEE Xplore, Wiley, ACM, and Science Direct), collating relevant papers published between 2017 and April 2024, a period which spans from the introduction of FL until now. Guided by the PRISMA protocol, we selected 49 papers to focus our systematic review on. We analysed these papers, paying special attention to the privacy threats and defensive measures -- specifically within the context of IoT -- using inclusion and exclusion criteria tailored to highlight recent advances and critical insights. We identified various privacy threats, including inference attacks, poisoning attacks, and eavesdropping, along with defensive measures such as Differential Privacy and Secure Multi-Party Computation. These defences were evaluated for their effectiveness in protecting privacy without compromising the functional integrity of FL in IoT settings. Our review underscores the necessity for robust and efficient privacy-preserving strategies tailored for IoT environments. Notably, there is a need for strategies against replay, evasion, and model stealing attacks. Exploring lightweight defensive measures and emerging technologies such as blockchain may help improve the privacy of FL in IoT, leading to the creation of FL models that can operate under variable network conditions.

We present an Alternating Direction Method of Multipliers (ADMM) algorithm designed to solve the Weighted Generalized Fused LASSO Signal Approximator (wFLSA). First, we show that wFLSAs can always be reformulated as a Generalized LASSO problem. With the availability of algorithms tailored to the Generalized LASSO, the issue appears to be, in principle, resolved. However, the computational complexity of these algorithms is high, with a time complexity of $O(p^4)$ for a single iteration, where $p$ represents the number of coefficients. To overcome this limitation, we propose an ADMM algorithm specifically tailored for wFLSA-equivalent problems, significantly reducing the complexity to $O(p^2)$. Our algorithm is publicly accessible through the R package wflsa.

This paper develops a numerical procedure to accelerate the convergence of the Favre-averaged Non-Linear Harmonic (FNLH) method. The scheme provides a unified mathematical framework for solving the sparse linear systems formed by the mean flow and the time-linearized harmonic flows of FNLH in an explicit or implicit fashion. The approach explores the similarity of the sparse linear systems of FNLH and leads to a memory efficient procedure, so that its memory consumption does not depend on the number of harmonics to compute. The proposed method has been implemented in the industrial CFD solver HYDRA. Two test cases are used to conduct a comparative study of explicit and implicit schemes in terms of convergence, computational efficiency, and memory consumption. Comparisons show that the implicit scheme yields better convergence than the explicit scheme and is also roughly 7 to 10 times more computationally efficient than the explicit scheme with 4 levels of multigrid. Furthermore, the implicit scheme consumes only approximately $50\%$ of the explicit scheme with four levels of multigrid. Compared with the full annulus unsteady Reynolds averaged Navier-Stokes (URANS) simulations, the implicit scheme produces comparable results to URANS with computational time and memory consumption that are two orders of magnitude smaller.

The present work provides an application of Global Sensitivity Analysis to supervised machine learning methods such as Random Forests. These methods act as black boxes, selecting features in high--dimensional data sets as to provide accurate classifiers in terms of prediction when new data are fed into the system. In supervised machine learning, predictors are generally ranked by importance based on their contribution to the final prediction. Global Sensitivity Analysis is primarily used in mathematical modelling to investigate the effect of the uncertainties of the input variables on the output. We apply it here as a novel way to rank the input features by their importance to the explainability of the data generating process, shedding light on how the response is determined by the dependence structure of its predictors. A simulation study shows that our proposal can be used to explore what advances can be achieved either in terms of efficiency, explanatory ability, or simply by way of confirming existing results.

There are various TCP variants such as Reno, Tahoe, Vegas, SACK and so on. These variants implement algorithms that handle congestion control. In our experiments we have used these variants to measure their performance such as throughput, delay (latency), and drop rate with respect to time and Constant Bit Rate (CBR) - no congestion control, specified bandwidth and sends packets at a specified rate. We have used the NS2 network simulator to perform all our experiments to analyze TCP performance.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

北京阿比特科技有限公司