亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, base LLM drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods. The source code is publicly available at: //github.com/tmlr-group/NoisyRationales.

相關內容

The ability of large language models (LLMs) to transform, interpret, and comprehend vast quantities of heterogeneous data presents a significant opportunity to enhance data-driven care delivery. However, the sensitive nature of protected health information (PHI) raises valid concerns about data privacy and trust in remote LLM platforms. In addition, the cost associated with cloud-based artificial intelligence (AI) services continues to impede widespread adoption. To address these challenges, we propose a shift in the LLM execution environment from opaque, centralized cloud providers to a decentralized and dynamic fog computing architecture. By executing open-weight LLMs in more trusted environments, such as the user's edge device or a fog layer within a local network, we aim to mitigate the privacy, trust, and financial challenges associated with cloud-based LLMs. We further present SpeziLLM, an open-source framework designed to facilitate rapid and seamless leveraging of different LLM execution layers and lowering barriers to LLM integration in digital health applications. We demonstrate SpeziLLM's broad applicability across six digital health applications, showcasing its versatility in various healthcare settings.

The tremendous success of behavior cloning (BC) in robotic manipulation has been largely confined to tasks where demonstrations can be effectively collected through human teleoperation. However, demonstrations for contact-rich manipulation tasks that require complex coordination of multiple contacts are difficult to collect due to the limitations of current teleoperation interfaces. We investigate how to leverage model-based planning and optimization to generate training data for contact-rich dexterous manipulation tasks. Our analysis reveals that popular sampling-based planners like rapidly exploring random tree (RRT), while efficient for motion planning, produce demonstrations with unfavorably high entropy. This motivates modifications to our data generation pipeline that prioritizes demonstration consistency while maintaining solution diversity. Combined with a diffusion-based goal-conditioned BC approach, our method enables effective policy learning and zero-shot transfer to hardware for two challenging contact-rich manipulation tasks.

Advancements in large language models (LLMs) have paved the way for LLM-based agent systems that offer enhanced accuracy and interpretability across various domains. Radiology, with its complex analytical requirements, is an ideal field for the application of these agents. This paper aims to investigate the pre-requisite question for building concrete radiology agents which is, `Can modern LLMs act as agent cores in radiology environments?' To investigate it, we introduce RadABench with three-fold contributions: First, we present RadABench-Data, a comprehensive synthetic evaluation dataset for LLM-based agents, generated from an extensive taxonomy encompassing 6 anatomies, 5 imaging modalities, 10 tool categories, and 11 radiology tasks. Second, we propose RadABench-EvalPlat, a novel evaluation platform for agents featuring a prompt-driven workflow and the capability to simulate a wide range of radiology toolsets. Third, we assess the performance of 7 leading LLMs on our benchmark from 5 perspectives with multiple metrics. Our findings indicate that while current LLMs demonstrate strong capabilities in many areas, they are still not sufficiently advanced to serve as the central agent core in a fully operational radiology agent system. Additionally, we identify key factors influencing the performance of LLM-based agent cores, offering insights for clinicians on how to apply agent systems in real-world radiology practices effectively. All of our code and data are open-sourced in //github.com/MAGIC-AI4Med/RadABench.

This paper addresses the challenges in developing language models for less-represented languages, with a focus on Luxembourgish. Despite its active development, Luxembourgish faces a digital data scarcity, exacerbated by Luxembourg's multilingual context. We propose a novel text generation model based on the T5 architecture, combining limited Luxembourgish data with equal amounts, in terms of size and type, of German and French data. We hypothesise that a model trained on Luxembourgish, German, and French will improve the model's cross-lingual transfer learning capabilities and outperform monolingual and large multilingual models. To verify this, the study at hand explores whether multilingual or monolingual training is more beneficial for Luxembourgish language generation. For the evaluation, we introduce LuxGen, a text generation benchmark that is the first of its kind for Luxembourgish.

Entity matching (EM) is a critical step in entity resolution (ER). Recently, entity matching based on large language models (LLMs) has shown great promise. However, current LLM-based entity matching approaches typically follow a binary matching paradigm that ignores the global consistency among record relationships. In this paper, we investigate various methodologies for LLM-based entity matching that incorporate record interactions from different perspectives. Specifically, we comprehensively compare three representative strategies: matching, comparing, and selecting, and analyze their respective advantages and challenges in diverse scenarios. Based on our findings, we further design a compound entity matching framework (ComEM) that leverages the composition of multiple strategies and LLMs. ComEM benefits from the advantages of different sides and achieves improvements in both effectiveness and efficiency. Experimental results on 8 ER datasets and 10 LLMs verify the superiority of incorporating record interactions through the selecting strategy, as well as the further cost-effectiveness brought by ComEM.

Cryptic crosswords are puzzles that rely on general knowledge and the solver's ability to manipulate language on different levels, dealing with various types of wordplay. Previous research suggests that solving such puzzles is challenging even for modern NLP models, including Large Language Models (LLMs). However, there is little to no research on the reasons for their poor performance on this task. In this paper, we establish the benchmark results for three popular LLMs: Gemma2, LLaMA3 and ChatGPT, showing that their performance on this task is still significantly below that of humans. We also investigate why these models struggle to achieve superior performance. We release our code and introduced datasets at //github.com/bodasadallah/decrypting-crosswords.

Within numerical reasoning, understanding numbers themselves is still a challenge for existing language models. Simple generalisations, such as solving 100+200 instead of 1+2, can substantially affect model performance (Sivakumar and Moosavi, 2023). Among various techniques, character-level embeddings of numbers have emerged as a promising approach to improve number representation. However, this method has limitations as it leaves the task of aggregating digit representations to the model, which lacks direct supervision for this process. In this paper, we explore the use of mathematical priors to compute aggregated digit embeddings and explicitly incorporate these aggregates into transformer models. This can be achieved either by adding a special token to the input embeddings or by introducing an additional loss function to enhance correct predictions. We evaluate the effectiveness of incorporating this explicit aggregation, analysing its strengths and shortcomings, and discuss future directions to better benefit from this approach. Our methods, while simple, are compatible with any pretrained model, easy to implement, and have been made publicly available.

Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs) for generating more factual, accurate, and up-to-date content. Existing methods either optimize prompts to guide LLMs in leveraging retrieved information or directly fine-tune LLMs to adapt to RAG scenarios. Although fine-tuning can yield better performance, it often compromises the LLMs' general generation capabilities by modifying their parameters. This limitation poses challenges in practical applications, especially when LLMs are already deployed, as parameter adjustments may affect their original functionality. To address this, we propose a novel method that involves learning scalable and pluggable virtual tokens for RAG. By maintaining the LLMs' original parameters and fine-tuning only the embeddings of these pluggable tokens, our approach not only enhances LLMs' performance but also preserves their general generation capabilities. Furthermore, we design several training strategies to improve the scalability, flexibility, and generalizability of our method. Comprehensive experiments across 12 question-answering tasks demonstrate the superiority of our approach.

Modeling policies for sequential clinical decision-making based on observational data is useful for describing treatment practices, standardizing frequent patterns in treatment, and evaluating alternative policies. For each task, it is essential that the policy model is interpretable. Learning accurate models requires effectively capturing the state of a patient, either through sequence representation learning or carefully crafted summaries of their medical history. While recent work has favored the former, it remains a question as to how histories should best be represented for interpretable policy modeling. Focused on model fit, we systematically compare diverse approaches to summarizing patient history for interpretable modeling of clinical policies across four sequential decision-making tasks. We illustrate differences in the policies learned using various representations by breaking down evaluations by patient subgroups, critical states, and stages of treatment, highlighting challenges specific to common use cases. We find that interpretable sequence models using learned representations perform on par with black-box models across all tasks. Interpretable models using hand-crafted representations perform substantially worse when ignoring history entirely, but are made competitive by incorporating only a few aggregated and recent elements of patient history. The added benefits of using a richer representation are pronounced for subgroups and in specific use cases. This underscores the importance of evaluating policy models in the context of their intended use.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

北京阿比特科技有限公司