We provide a self contained proof of a result of Dudley [Dud64]} which shows that a bounded convex-body in $\Re^d$ can be $\varepsilon$-approximated, by the intersection of $O_d\bigl(\varepsilon^{-(d-1)/2} \bigr)$ halfspaces, where $O_d$ hides constants that depends on $d$.
Due to M\"{u}ller's theorem, the Kolmogorov complexity of a string was shown to be equal to its quantum Kolmogorov complexity. Thus there are no benefits to using quantum mechanics to compress classical information. The quantitative amount of information in classical sources is invariant to the physical model used. These consequences make this theorem arguably the most important result in the intersection of algorithmic information theory and physics. The original proof is quite extensive. This paper contains two simple proofs of this theorem. This paper also contains new bounds for quantum Kolmogorov complexity with error.
The Orthogonal Polygon Covering with Squares (OPCS) problem takes as input an orthogonal polygon $P$ without holes with $n$ vertices, where vertices have integral coordinates. The aim is to find a minimum number of axis-parallel, possibly overlapping squares which lie completely inside $P$, such that their union covers the entire region inside $P$. Aupperle et. al~\cite{aupperle1988covering} provide an $\mathcal O(N^{1.5})$-time algorithm to solve OPCS for orthogonal polygons without holes, where $N$ is the number of integral lattice points lying in the interior or on the boundary of $P$. Designing algorithms for OPCS with a running time polynomial in $n$ (the number of vertices of $P$) was discussed as an open question in \cite{aupperle1988covering}, since $N$ can be exponentially larger than $n$. In this paper we design a polynomial-time exact algorithm for OPCS with a running time of $\mathcal O(n^{14})$. We also consider the following structural parameterized version of the problem. A knob in an orthogonal polygon is a polygon edge whose both endpoints are convex polygon vertices. Given an input orthogonal polygon with $n$ vertices and $k$ knobs, we design an algorithm for OPCS with running time $\mathcal O(n^2 + k^{14} \cdot n)$. In \cite{aupperle1988covering}, the Orthogonal Polygon with Holes Covering with Squares (OPCSH) problem is also studied where orthogonal polygon could have holes, and the objective is to find a minimum square covering of the input polygon. This is shown to be NP-complete. We think there is an error in the existing proof in \cite{aupperle1988covering}, where a reduction from Planar 3-CNF is shown. We fix this error in the proof with an alternate construction of one of the gadgets used in the reduction, hence completing the proof of NP-completeness of OPCSH.
Given a graph $G = (V, E)$ and a model of information flow on that network, a fundamental question is to understand if all the nodes have sufficient access to information generated at other nodes in the graph. If not, we can ask if a small set of edge additions improve information access. Formally, the broadcast value of a network is defined to be the minimum over pairs $u,v \in V$ of the probability that an information cascade starting at $u$ reaches $v$. Recent work in the algorithmic fairness literature has focused on heuristics for adding a few edges to a graph to improve its broadcast. Our goal is to formally study the approximability of the Broadcast Improvement problem: given $G$ and a parameter $k$, find the best set of $k$ edges to add to $G$ in order to maximize the broadcast value of the resulting graph. We develop efficient bicriteria approximation algorithms. If the optimal solution adds $k$ edges and achieves a broadcast of $\beta^*$, we develop algorithms that can (a) add $2k-1$ edges and achieve a broadcast value roughly $(\beta^*)^4$, or (b) add $O(k\log n)$ edges and achieve a broadcast roughly $\beta^*$. We also provide other trade-offs, that can be better depending on $k$ and the parameter associated with propagation in the cascade model. We complement our results by proving that unless P = NP, any algorithm that adds $O(k)$ edges must lose significantly in the approximation of $\beta^*$, resolving an open question. Our techniques are inspired by connections between Broadcast Improvement and problems such as Metric $k$-Center and Diameter Reduction. However, since the objective involves information cascades, we need to develop novel probabilistic tools to reason about the existence of paths in edge-sampled graphs. Finally, we show that our techniques extend to a single-source variant, for which we show both bicriteria algorithms and inapproximability results.
In batch Kernel Density Estimation (KDE) for a kernel function $f$, we are given as input $2n$ points $x^{(1)}, \cdots, x^{(n)}, y^{(1)}, \cdots, y^{(n)}$ in dimension $m$, as well as a vector $v \in \mathbb{R}^n$. These inputs implicitly define the $n \times n$ kernel matrix $K$ given by $K[i,j] = f(x^{(i)}, y^{(j)})$. The goal is to compute a vector $v$ which approximates $K w$ with $|| Kw - v||_\infty < \varepsilon ||w||_1$. A recent line of work has proved fine-grained lower bounds conditioned on SETH. Backurs et al. first showed the hardness of KDE for Gaussian-like kernels with high dimension $m = \Omega(\log n)$ and large scale $B = \Omega(\log n)$. Alman et al. later developed new reductions in roughly this same parameter regime, leading to lower bounds for more general kernels, but only for very small error $\varepsilon < 2^{- \log^{\Omega(1)} (n)}$. In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter regimes, closing gaps between the known algorithms and lower bounds. In the setting where $m = C\log n$ and $B = o(\log n)$, we prove Gaussian KDE requires $n^{2-o(1)}$ time to achieve additive error $\varepsilon < \Omega(m/B)^{-m}$, matching the performance of the polynomial method up to low-order terms. In the low dimensional setting $m = o(\log n)$, we show that Gaussian KDE requires $n^{2-o(1)}$ time to achieve $\varepsilon$ such that $\log \log (\varepsilon^{-1}) > \tilde \Omega ((\log n)/m)$, matching the error bound achievable by FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known in this regime. Our new lower bounds make use of an intricate analysis of a special case of the kernel matrix -- the `counting matrix'. As a key technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur polynomials from algebraic combinatorics.
The rise of powerful AI models, more formally $\textit{General-Purpose AI Systems}$ (GPAIS), has led to impressive leaps in performance across a wide range of tasks. At the same time, researchers and practitioners alike have raised a number of privacy concerns, resulting in a wealth of literature covering various privacy risks and vulnerabilities of AI models. Works surveying such risks provide differing focuses, leading to disparate sets of privacy risks with no clear unifying taxonomy. We conduct a systematic review of these survey papers to provide a concise and usable overview of privacy risks in GPAIS, as well as proposed mitigation strategies. The developed privacy framework strives to unify the identified privacy risks and mitigations at a technical level that is accessible to non-experts. This serves as the basis for a practitioner-focused interview study to assess technical stakeholder perceptions of privacy risks and mitigations in GPAIS.
Let $\mathsf{TH}_k$ denote the $k$-out-of-$n$ threshold function: given $n$ input Boolean variables, the output is $1$ if and only if at least $k$ of the inputs are $1$. We consider the problem of computing the $\mathsf{TH}_k$ function using noisy readings of the Boolean variables, where each reading is incorrect with some fixed and known probability $p \in (0,1/2)$. As our main result, we show that it is sufficient to use $(1+o(1)) \frac{n\log \frac{m}{\delta}}{D_{\mathsf{KL}}(p \| 1-p)}$ queries in expectation to compute the $\mathsf{TH}_k$ function with a vanishing error probability $\delta = o(1)$, where $m\triangleq \min\{k,n-k\}$ and $D_{\mathsf{KL}}(p \| 1-p)$ denotes the Kullback-Leibler divergence between $\mathsf{Bern}(p)$ and $\mathsf{Bern}(1-p)$ distributions. Conversely, we show that any algorithm achieving an error probability of $\delta = o(1)$ necessitates at least $(1-o(1))\frac{(n-m)\log\frac{m}{\delta}}{D_{\mathsf{KL}}(p \| 1-p)}$ queries in expectation. The upper and lower bounds are tight when $m=o(n)$, and are within a multiplicative factor of $\frac{n}{n-m}$ when $m=\Theta(n)$. In particular, when $k=n/2$, the $\mathsf{TH}_k$ function corresponds to the $\mathsf{MAJORITY}$ function, in which case the upper and lower bounds are tight up to a multiplicative factor of two. Compared to previous work, our result tightens the dependence on $p$ in both the upper and lower bounds.
In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph $G=(V,E)$, a root vertex $r$ and a set $S \subseteq V$ of $k$ terminals. The goal is to find a min-cost subgraph that connects $r$ to each of the terminals. DST admits an $O(\log^2 k/\log \log k)$-approximation in quasi-polynomial time, and an $O(k^{\epsilon})$-approximation for any fixed $\epsilon > 0$ in polynomial-time. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [ICALP 2023] obtained a simple and elegant polynomial-time $O(\log k)$-approximation for DST in planar digraphs via Thorup's shortest path separator theorem. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in Friggstad and Mousavi [ICALP 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree, Covering Steiner Tree, and the Polymatroid Steiner Tree problems in planar digraphs. All these problems are hard to approximate to within a factor of $\Omega(\log^2 n/\log \log n)$ even in trees. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of $O(\log^2 k)$ in planar graphs. This is in contrast to general graphs where the integrality gap of this LP is known to be $\Omega(k)$ and $\Omega(n^{\delta})$ for some fixed $\delta > 0$. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the $O(R + \log k)$ approximation of Friggstad and Mousavi [ICALP 2023] when $R= \omega(\log^2 k)$.
We devise a deterministic algorithm for minimum Steiner cut, which uses $(\log n)^{O(1)}$ maximum flow calls and additional near-linear time. This algorithm improves on Li and Panigrahi's (FOCS 2020) algorithm, which uses $(\log n)^{O(1/\epsilon^4)}$ maximum flow calls and additional $O(m^{1+\epsilon})$ time, for $\epsilon > 0$. Our algorithm thus shows that deterministic minimum Steiner cut can be solved in maximum flow time up to polylogarithmic factors, given any black-box deterministic maximum flow algorithm. Our main technical contribution is a novel deterministic graph decomposition method for terminal vertices that generalizes all existing $s$-strong partitioning methods, which we believe may have future applications.
We prove a lower bound on the communication complexity of computing the $n$-fold xor of an arbitrary function $f$, in terms of the communication complexity and rank of $f$. We prove that $D(f^{\oplus n}) \geq n \cdot \Big(\frac{\Omega(D(f))}{\log \mathsf{rk}(f)} -\log \mathsf{rk}(f)\Big )$, where here $D(f), D(f^{\oplus n})$ represent the deterministic communication complexity, and $\mathsf{rk}(f)$ is the rank of $f$. Our methods involve a new way to use information theory to reason about deterministic communication complexity.
A subset of vertices $S$ of a graph $G$ is a dominating set if every vertex in $V \setminus S$ has at least one neighbor in $S$. A domatic partition is a partition of the vertices of a graph $G$ into disjoint dominating sets. The domatic number $d(G)$ is the maximum size of a domatic partition. Suppose that $dp(G,i)$ is the number of distinct domatic partition of $G$ with cardinality $i$. In this paper, we consider the generating function of $dp(G,i)$, i.e., $DP(G,x)=\sum_{i=1}^{d(G)}dp(G,i)x^i$ which we call it the domatic partition polynomial. We explore the domatic polynomial for trees, providing a quadratic time algorithm for its computation based on weak 2-coloring numbers. Our results include specific findings for paths and certain graph products, demonstrating practical applications of our theoretical framework.