Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios. While distributed DNNs have been studied, to the best of our knowledge the resilience of distributed DNNs to adversarial action still remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and introduce two new measurements for distortion and robustness. Our theoretical findings indicate that (i) assuming the same level of information distortion, latent features are always more robust than input representations; (ii) the adversarial robustness is jointly determined by the feature dimension and the generalization capability of the DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks to the ImageNet-1K dataset. Our experimental results support our theoretical findings by showing that the compressed latent representations can reduce the success rate of adversarial attacks by 88% in the best case and by 57% on the average compared to attacks to the input space.
We present a neural network approach for closed-loop deep brain stimulation (DBS). We cast the problem of finding an optimal neurostimulation strategy as a control problem. In this setting, control policies aim to optimize therapeutic outcomes by tailoring the parameters of a DBS system, typically via electrical stimulation, in real time based on the patient's ongoing neuronal activity. We approximate the value function offline using a neural network to enable generating controls (stimuli) in real time via the feedback form. The neuronal activity is characterized by a nonlinear, stiff system of differential equations as dictated by the Hodgkin-Huxley model. Our training process leverages the relationship between Pontryagin's maximum principle and Hamilton-Jacobi-Bellman equations to update the value function estimates simultaneously. Our numerical experiments illustrate the accuracy of our approach for out-of-distribution samples and the robustness to moderate shocks and disturbances in the system.
Characterizing neural networks in terms of better-understood formal systems has the potential to yield new insights into the power and limitations of these networks. Doing so for transformers remains an active area of research. Bhattamishra and others have shown that transformer encoders are at least as expressive as a certain kind of counter machine, while Merrill and Sabharwal have shown that fixed-precision transformer encoders recognize only languages in uniform $TC^0$. We connect and strengthen these results by identifying a variant of first-order logic with counting quantifiers that is simultaneously an upper bound for fixed-precision transformer encoders and a lower bound for transformer encoders. This brings us much closer than before to an exact characterization of the languages that transformer encoders recognize.
Advances in lightweight neural networks have revolutionized computer vision in a broad range of IoT applications, encompassing remote monitoring and process automation. However, the detection of small objects, which is crucial for many of these applications, remains an underexplored area in current computer vision research, particularly for embedded devices. To address this gap, the paper proposes a novel adaptive tiling method that can be used on top of any existing object detector including the popular FOMO network for object detection on microcontrollers. Our experimental results show that the proposed tiling method can boost the F1-score by up to 225% while reducing the average object count error by up to 76%. Furthermore, the findings of this work suggest that using a soft F1 loss over the popular binary cross-entropy loss can significantly reduce the negative impact of imbalanced data. Finally, we validate our approach by conducting experiments on the Sony Spresense microcontroller, showcasing the proposed method's ability to strike a balance between detection performance, low latency, and minimal memory consumption.
Fluid antenna multiple access (FAMA) is capable of exploiting the high spatial diversity of wireless channels to mitigate multi-user interference via flexible port switching, which achieves a better performance than traditional multi-input-multi-output (MIMO) systems. Moreover, integrated data and energy transfer (IDET) is able to provide both the wireless data transfer (WDT) and wireless energy transfer (WET) services towards low-power devices. In this paper, a FAMA assisted IDET system is studied, where $N$ access points (APs) provide dedicated IDET services towards $N$ user equipments (UEs). Each UE is equipped with a single fluid antenna. The performance of WDT and WET , \textit{i.e.}, the WDT outage probability, the WET outage probability, the reliable throughput and the average energy harvesting amount, are analysed theoretically by using time switching (TS) between WDT and WET. Numerical results validate our theoretical analysis, which reveals that the number of UEs and TS ratio should be optimized to achieve a trade-off between the WDT and WET performance. Moreover, FAMA assisted IDET achieves a better performance in terms of both WDT and WET than traditional MIMO with the same antenna size.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.
What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.