Although some current AIs surpass human abilities especially in closed artificial worlds such as board games, their abilities in the real world are limited. They make strange mistakes and do not notice them. They cannot be instructed easily, fail to use common sense, and lack curiosity. They do not make good collaborators. Mainstream approaches for creating AIs are built using the traditional manually-constructed symbolic AI approach and generative and deep learning AI approaches including large language models (LLMs). These systems are not well suited for creating robust and trustworthy AIs. Although it is outside of the mainstream, the developmental bootstrapping approach has more promise. In developmental bootstrapping, AIs develop competences like human children do. They start with innate competences. They interact with the environment and learn from their interactions. They incrementally extend their innate competences with self-developed competences. They interact and learn from people and establish perceptual, cognitive, and common grounding. They acquire the competences that they need through an incremental bootstrapping process. However, developmental robotics has not yet produced AIs with robust adult-level competences. Projects have typically stopped at the Toddler Barrier corresponding to human infant development at about two years of age, before their speech is fluent. They also do not bridge the Reading Barrier, to skillfully and skeptically tap into the vast socially developed recorded information resources that power LLMs. The next competences in human cognitive development involve intrinsic motivation, imitation learning, imagination, coordination, and communication. This position paper lays out the logic, prospects, gaps, and challenges for extending the practice of developmental bootstrapping to acquire further competences and create robust and resilient AIs.
Closeness is an important characteristic of networks. In this article we will calculate the closeness of line graphs of some basic graphs and the closeness of line graphs of connected by a bridge two basic graphs.
Language models (LMs) are becoming the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood. We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models. First, we taxonomize the vast space of potential scenarios (i.e. use cases) and metrics (i.e. desiderata) that are of interest for LMs. Then we select a broad subset based on coverage and feasibility, noting what's missing or underrepresented (e.g. question answering for neglected English dialects, metrics for trustworthiness). Second, we adopt a multi-metric approach: We measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity, and efficiency) for each of 16 core scenarios when possible (87.5% of the time). This ensures metrics beyond accuracy don't fall to the wayside, and that trade-offs are clearly exposed. We also perform 7 targeted evaluations, based on 26 targeted scenarios, to analyze specific aspects (e.g. reasoning, disinformation). Third, we conduct a large-scale evaluation of 30 prominent language models (spanning open, limited-access, and closed models) on all 42 scenarios, 21 of which were not previously used in mainstream LM evaluation. Prior to HELM, models on average were evaluated on just 17.9% of the core HELM scenarios, with some prominent models not sharing a single scenario in common. We improve this to 96.0%: now all 30 models have been densely benchmarked on the same core scenarios and metrics under standardized conditions. Our evaluation surfaces 25 top-level findings. For full transparency, we release all raw model prompts and completions publicly for further analysis, as well as a general modular toolkit. We intend for HELM to be a living benchmark for the community, continuously updated with new scenarios, metrics, and models.
Given that Transformers are ubiquitous in wide tasks, interpreting their internals is a pivotal issue. Still, their particular components, feed-forward (FF) blocks, have typically been less analyzed despite their substantial parameter amounts. We analyze the input contextualization effects of FF blocks by rendering them in the attention maps as a human-friendly visualization scheme. Our experiments with both masked- and causal-language models reveal that FF networks modify the input contextualization to emphasize specific types of linguistic compositions. In addition, FF and its surrounding components tend to cancel out each other's effects, suggesting potential redundancy in the processing of the Transformer layer.
When considering the opening part of 1800 short stories, we find that the first dozen paragraphs of the average narrative follow an action principle as defined in arXiv:2309.06600. When the order of the paragraphs is shuffled, the average no longer exhibits this property. The findings show that there is a preferential direction we take in semantic space when starting a story, possibly related to a common Western storytelling tradition as implied by Aristotle in Poetics.
Humanity for centuries has perfected skills of interpersonal interactions and evolved patterns that enable people to detect lies and deceiving behavior of others in face-to-face settings. Unprecedented growth of people's access to mobile phones and social media raises an important question: How does this new technology influence people's interactions and support the use of traditional patterns? In this paper, we answer this question for homophily driven patterns in social media. In our previous studies, we found that, on a university campus, changes in student opinions were driven by the desire to hold popular opinions. Here, we demonstrate that the evolution of online platform-wide opinion groups is driven by the same desire. We focus on two social media: Twitter and Parler, on which we tracked the political biases of their users. On Parler, an initially stable group of right-biased users evolved into a permanent right-leaning echo chamber dominating weaker, transient groups of members with opposing political biases. In contrast, on Twitter, the initial presence of two large opposing bias groups led to the evolution of a bimodal bias distribution, with a high degree of polarization. We capture the movement of users from the initial to final bias groups during the tracking period. We also show that user choices are influenced by side-effects of homophily. The users entering the platform attempt to find a sufficiently large group whose members hold political bias within the range sufficiently close to the new user's bias. If successful, they stabilize their bias and become a permanent member of the group. Otherwise, they leave the platform. We believe that the dynamics of users uncovered in this paper create a foundation for technical solutions supporting social groups on social media and socially aware networks.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.