亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gesture is an important mean of non-verbal communication, with visual modality allows human to convey information during interaction, facilitating peoples and human-machine interactions. However, it is considered difficult to automatically recognise gestures. In this work, we explore three different means to recognise hand signs using deep learning: supervised learning based methods, self-supervised methods and visualisation based techniques applied to 3D moving skeleton data. Self-supervised learning used to train fully connected, CNN and LSTM method. Then, reconstruction method is applied to unlabelled data in simulated settings using CNN as a backbone where we use the learnt features to perform the prediction in the remaining labelled data. Lastly, Grad-CAM is applied to discover the focus of the models. Our experiments results show that supervised learning method is capable to recognise gesture accurately, with self-supervised learning increasing the accuracy in simulated settings. Finally, Grad-CAM visualisation shows that indeed the models focus on relevant skeleton joints on the associated gesture.

相關內容

Hypothesis testing in high dimensional data is a notoriously difficult problem without direct access to competing models' likelihood functions. This paper argues that statistical divergences can be used to quantify the difference between the population distributions of observed data and competing models, justifying their use as the basis of a hypothesis test. We go on to point out how modern techniques for functional optimization let us estimate many divergences, without the need for population likelihood functions, using samples from two distributions alone. We use a physics-based example to show how the proposed two-sample test can be implemented in practice, and discuss the necessary steps required to mature the ideas presented into an experimental framework. The code used has been made available for others to use.

Dynamics simulation with frictional contacts is important for a wide range of applications, from cloth simulation to object manipulation. Recent methods using smoothed lagged friction forces have enabled robust and differentiable simulation of elastodynamics with friction. However, the resulting frictional behavior can be inaccurate and may not converge to analytic solutions. Here we evaluate the accuracy of lagged friction models in comparison with implicit frictional contact systems. We show that major inaccuracies near the stick-slip threshold in such systems are caused by lagging of friction forces rather than by smoothing the Coulomb friction curve. Furthermore, we demonstrate how systems involving implicit or lagged friction can be correctly used with higher-order time integration and highlight limitations in earlier attempts. We demonstrate how to exploit forward-mode automatic differentiation to simplify and, in some cases, improve the performance of the inexact Newton method. Finally, we show that other complex phenomena can also be simulated effectively while maintaining smoothness of the entire system. We extend our method to exhibit stick-slip frictional behavior and preserve volume on compressible and nearly-incompressible media using soft constraints.

Log anomaly detection is a critical component in modern software system security and maintenance, serving as a crucial support and basis for system monitoring, operation, and troubleshooting. It aids operations personnel in timely identification and resolution of issues. However, current methods in log anomaly detection still face challenges such as underutilization of unlabeled data, imbalance between normal and anomaly class data, and high rates of false positives and false negatives, leading to insufficient effectiveness in anomaly recognition. In this study, we propose a semi-supervised log anomaly detection method named DQNLog, which integrates deep reinforcement learning to enhance anomaly detection performance by leveraging a small amount of labeled data and large-scale unlabeled data. To address issues of imbalanced data and insufficient labeling, we design a state transition function biased towards anomalies based on cosine similarity, aiming to capture semantic-similar anomalies rather than favoring the majority class. To enhance the model's capability in learning anomalies, we devise a joint reward function that encourages the model to utilize labeled anomalies and explore unlabeled anomalies, thereby reducing false positives and false negatives. Additionally, to prevent the model from deviating from normal trajectories due to misestimation, we introduce a regularization term in the loss function to ensure the model retains prior knowledge during updates. We evaluate DQNLog on three widely used datasets, demonstrating its ability to effectively utilize large-scale unlabeled data and achieve promising results across all experimental datasets.

Most current audio-visual emotion recognition models lack the flexibility needed for deployment in practical applications. We envision a multimodal system that works even when only one modality is available and can be implemented interchangeably for either predicting emotional attributes or recognizing categorical emotions. Achieving such flexibility in a multimodal emotion recognition system is difficult due to the inherent challenges in accurately interpreting and integrating varied data sources. It is also a challenge to robustly handle missing or partial information while allowing direct switch between regression or classification tasks. This study proposes a versatile audio-visual learning (VAVL) framework for handling unimodal and multimodal systems for emotion regression or emotion classification tasks. We implement an audio-visual framework that can be trained even when audio and visual paired data is not available for part of the training set (i.e., audio only or only video is present). We achieve this effective representation learning with audio-visual shared layers, residual connections over shared layers, and a unimodal reconstruction task. Our experimental results reveal that our architecture significantly outperforms strong baselines on the CREMA-D, MSP-IMPROV, and CMU-MOSEI corpora. Notably, VAVL attains a new state-of-the-art performance in the emotional attribute prediction task on the MSP-IMPROV corpus.

This study proposes a unified theory and statistical learning approach for traffic conflict detection, addressing the long-existing call for a consistent and comprehensive methodology to evaluate the collision risk emerging in road user interactions. The proposed theory assumes context-dependent probabilistic collision risk and frames conflict detection as assessing this risk by statistical learning of extreme events in daily interactions. Experiments using real-world trajectory data are conducted in this study, where a unified metric of conflict is trained with lane-changing interactions on German highways and applied to near-crash events from the 100-Car Naturalistic Driving Study in the U.S. Results of the experiments demonstrate that the trained metric provides effective collision warnings, generalises across distinct datasets and traffic environments, covers a broad range of conflicts, and delivers a long-tailed distribution of conflict intensity. Reflecting on these results, the unified theory ensures consistent evaluation by a generic formulation that encompasses varying assumptions of traffic conflicts; the statistical learning approach then enables a comprehensive consideration of influencing factors such as motion states of road users, environment conditions, and participant characteristics. Therefore, the theory and learning approach jointly provide an explainable and adaptable methodology for conflict detection among different road users and across various interaction scenarios. This promises to reduce accidents and improve overall traffic safety, by enhanced safety assessment of traffic infrastructures, more effective collision warning systems for autonomous driving, and a deeper understanding of road user behaviour in different traffic conditions.

There is a recent boom in the development of AI solutions to facilitate and enhance diagnostic procedures for established clinical tools. To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors. These approaches are hardly comparable as all models are designed, trained and evaluated on proprietary/silo-data sets. With this study we propose a sensor fusion approach for assessing fidgety movements (FMs) comparing three different sensor modalities (pressure, inertial, and visual sensors). Various combinations and two sensor fusion approaches (late and early fusion) for infant movement classification were tested to evaluate whether a multi-sensor system outperforms single modality assessments. The performance of the three-sensor fusion (classification accuracy of 94.5\%) was significantly higher than that of any single modality evaluated, suggesting the sensor fusion approach is a promising avenue for automated classification of infant motor patterns. The development of a robust sensor fusion system may significantly enhance AI-based early recognition of neurofunctions, ultimately facilitating automated early detection of neurodevelopmental conditions.

Due to its empirical success in few-shot classification and reinforcement learning, meta-learning has recently received significant interest. Meta-learning methods leverage data from previous tasks to learn a new task in a sample-efficient manner. In particular, model-agnostic methods look for initialization points from which gradient descent quickly adapts to any new task. Although it has been empirically suggested that such methods perform well by learning shared representations during pretraining, there is limited theoretical evidence of such behavior. More importantly, it has not been shown that these methods still learn a shared structure, despite architectural misspecifications. In this direction, this work shows, in the limit of an infinite number of tasks, that first-order ANIL with a linear two-layer network architecture successfully learns linear shared representations. This result even holds with overparametrization; having a width larger than the dimension of the shared representations results in an asymptotically low-rank solution. The learned solution then yields a good adaptation performance on any new task after a single gradient step. Overall, this illustrates how well model-agnostic methods such as first-order ANIL can learn shared representations.

Areas of computational mechanics such as uncertainty quantification and optimization usually involve repeated evaluation of numerical models that represent the behavior of engineering systems. In the case of complex nonlinear systems however, these models tend to be expensive to evaluate, making surrogate models quite valuable. Artificial neural networks approximate systems very well by taking advantage of the inherent information of its given training data. In this context, this paper investigates the improvement of the training process by including sensitivity information, which are partial derivatives w.r.t. inputs, as outlined by Sobolev training. In computational mechanics, sensitivities can be applied to neural networks by expanding the training loss function with additional loss terms, thereby improving training convergence resulting in lower generalisation error. This improvement is shown in two examples of linear and non-linear material behavior. More specifically, the Sobolev designed loss function is expanded with residual weights adjusting the effect of each loss on the training step. Residual weighting is the given scaling to the different training data, which in this case are response and sensitivities. These residual weights are optimized by an adaptive scheme, whereby varying objective functions are explored, with some showing improvements in accuracy and precision of the general training convergence.

Sharpness is an almost generic assumption in continuous optimization that bounds the distance from minima by objective function suboptimality. It facilitates the acceleration of first-order methods through restarts. However, sharpness involves problem-specific constants that are typically unknown, and restart schemes typically reduce convergence rates. Moreover, these schemes are challenging to apply in the presence of noise or with approximate model classes (e.g., in compressive imaging or learning problems), and they generally assume that the first-order method used produces feasible iterates. We consider the assumption of approximate sharpness, a generalization of sharpness that incorporates an unknown constant perturbation to the objective function error. This constant offers greater robustness (e.g., with respect to noise or relaxation of model classes) for finding approximate minimizers. By employing a new type of search over the unknown constants, we design a restart scheme that applies to general first-order methods and does not require the first-order method to produce feasible iterates. Our scheme maintains the same convergence rate as when the constants are known. The convergence rates we achieve for various first-order methods match the optimal rates or improve on previously established rates for a wide range of problems. We showcase our restart scheme in several examples and highlight potential future applications and developments of our framework and theory.

Multi-fidelity machine learning methods address the accuracy-efficiency trade-off by integrating scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data. We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains, integrating a non-probabilistic regression model for the low-fidelity with a Bayesian model for the high-fidelity. The models are trained in a staggered scheme, where the low-fidelity model is transfer-learned to the high-fidelity data and a Bayesian model is trained for the residual. This three-model strategy -- deterministic low-fidelity, transfer learning, and Bayesian residual -- leads to a prediction that includes uncertainty quantification both for noisy and noiseless multi-fidelity data. The strategy is general and unifies the topic, highlighting the expressivity trade-off between the transfer-learning and Bayesian models (a complex transfer-learning model leads to a simpler Bayesian model, and vice versa). We propose modeling choices for two scenarios, and argue in favor of using a linear transfer-learning model that fuses 1) kernel ridge regression for low-fidelity with Gaussian processes for high-fidelity; or 2) deep neural network for low-fidelity with a Bayesian neural network for high-fidelity. We demonstrate the effectiveness and efficiency of the proposed strategies and contrast them with the state-of-the-art based on various numerical examples. The simplicity of these formulations makes them practical for a broad scope of future engineering applications.

北京阿比特科技有限公司