We introduce a new approach for identifying and characterizing voids within two-dimensional (2D) point distributions through the integration of Delaunay triangulation and Voronoi diagrams, combined with a Minimal Distance Scoring algorithm. Our methodology initiates with the computational determination of the Convex Hull vertices within the point cloud, followed by a systematic selection of optimal line segments, strategically chosen for their likelihood of intersecting internal void regions. We then utilize Delaunay triangulation in conjunction with Voronoi diagrams to ascertain the initial points for the construction of the maximal internal curve envelope by adopting a pseudo-recursive approach for higher-order void identification. In each iteration, the existing collection of maximal internal curve envelope points serves as a basis for identifying additional candidate points. This iterative process is inherently self-converging, ensuring progressive refinement of the void's shape with each successive computation cycle. The mathematical robustness of this method allows for an efficient convergence to a stable solution, reflecting both the geometric intricacies and the topological characteristics of the voids within the point cloud. Our findings introduce a method that aims to balance geometric accuracy with computational practicality. The approach is designed to improve the understanding of void shapes within point clouds and suggests a potential framework for exploring more complex, multi-dimensional data analysis.
Federated Learning (FL) algorithms commonly sample a random subset of clients to address the straggler issue and improve communication efficiency. While recent works have proposed various client sampling methods, they have limitations in joint system and data heterogeneity design, which may not align with practical heterogeneous wireless networks. In this work, we advocate a new independent client sampling strategy to minimize the wall-clock training time of FL, while considering data heterogeneity and system heterogeneity in both communication and computation. We first derive a new convergence bound for non-convex loss functions with independent client sampling and then propose an adaptive bandwidth allocation scheme. Furthermore, we propose an efficient independent client sampling algorithm based on the upper bounds on the convergence rounds and the expected per-round training time, to minimize the wall-clock time of FL, while considering both the data and system heterogeneity. Experimental results under practical wireless network settings with real-world prototype demonstrate that the proposed independent sampling scheme substantially outperforms the current best sampling schemes under various training models and datasets.
We develop a statistical inference method for an optimal transport map between distributions on real numbers with uniform confidence bands. The concept of optimal transport (OT) is used to measure distances between distributions, and OT maps are used to construct the distance. OT has been applied in many fields in recent years, and its statistical properties have attracted much interest. In particular, since the OT map is a function, a uniform norm-based statistical inference is significant for visualization and interpretation. In this study, we derive a limit distribution of a uniform norm of an estimation error for the OT map, and then develop a uniform confidence band based on it. In addition to our limit theorem, we develop a bootstrap method with kernel smoothing, then also derive its validation and guarantee on an asymptotic coverage probability of the confidence band. Our proof is based on the functional delta method and the representation of OT maps on the reals.
Self-Supervised Learning (SSL) methods such as VICReg, Barlow Twins or W-MSE avoid collapse of their joint embedding architectures by constraining or regularizing the covariance matrix of their projector's output. This study highlights important properties of such strategy, which we coin Variance-Covariance regularization (VCReg). More precisely, we show that {\em VCReg combined to a MLP projector enforces pairwise independence between the features of the learned representation}. This result emerges by bridging VCReg applied on the projector's output to kernel independence criteria applied on the projector's input. We empirically validate our findings where (i) we put in evidence which projector's characteristics favor pairwise independence, (ii) we demonstrate pairwise independence to be beneficial for out-of-domain generalization, (iii) we demonstrate that the scope of VCReg goes beyond SSL by using it to solve Independent Component Analysis. This provides the first theoretical motivation and explanation of MLP projectors in SSL.
Variable projection methods prove highly efficient in solving separable nonlinear least squares problems by transforming them into a reduced nonlinear least squares problem, typically solvable via the Gauss-Newton method. When solving large-scale separable nonlinear inverse problems with general-form Tikhonov regularization, the computational demand for computing Jacobians in the Gauss-Newton method becomes very challenging. To mitigate this, iterative methods, specifically LSQR, can be used as inner solvers to compute approximate Jacobians. This article analyzes the impact of these approximate Jacobians within the variable projection method and introduces stopping criteria to ensure convergence. We also present numerical experiments where we apply the proposed method to solve a blind deconvolution problem to illustrate and confirm our theoretical results.
This paper contributes a new approach for distributional reinforcement learning which elucidates a clean separation of transition structure and reward in the learning process. Analogous to how the successor representation (SR) describes the expected consequences of behaving according to a given policy, our distributional successor measure (SM) describes the distributional consequences of this behaviour. We formulate the distributional SM as a distribution over distributions and provide theory connecting it with distributional and model-based reinforcement learning. Moreover, we propose an algorithm that learns the distributional SM from data by minimizing a two-level maximum mean discrepancy. Key to our method are a number of algorithmic techniques that are independently valuable for learning generative models of state. As an illustration of the usefulness of the distributional SM, we show that it enables zero-shot risk-sensitive policy evaluation in a way that was not previously possible.
Autonomous vehicles have to obey traffic rules. These rules are often formalized using temporal logic, resulting in constraints that are hard to solve using optimization-based motion planners. Reinforcement Learning (RL) is a promising method to find motion plans adhering to temporal logic specifications. However, vanilla RL algorithms are based on random exploration, which is inherently unsafe. To address this issue, we propose a provably safe RL approach that always complies with traffic rules. As a specific application area, we consider vessels on the open sea, which must adhere to the Convention on the International Regulations for Preventing Collisions at Sea (COLREGS). We introduce an efficient verification approach that determines the compliance of actions with respect to the COLREGS formalized using temporal logic. Our action verification is integrated into the RL process so that the agent only selects verified actions. In contrast to agents that only integrate the traffic rule information in the reward function, our provably safe agent always complies with the formalized rules in critical maritime traffic situations and, thus, never causes a collision.
The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations and we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti function transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler characteristic function transform.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.