亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments.

相關內容

Motivated by packet routing in computer networks, online queuing systems are composed of queues receiving packets at different rates. Repeatedly, they send packets to servers, each of them treating only at most one packet at a time. In the centralized case, the number of accumulated packets remains bounded (i.e., the system is \textit{stable}) as long as the ratio between service rates and arrival rates is larger than $1$. In the decentralized case, individual no-regret strategies ensures stability when this ratio is larger than $2$. Yet, myopically minimizing regret disregards the long term effects due to the carryover of packets to further rounds. On the other hand, minimizing long term costs leads to stable Nash equilibria as soon as the ratio exceeds $\frac{e}{e-1}$. Stability with decentralized learning strategies with a ratio below $2$ was a major remaining question. We first argue that for ratios up to $2$, cooperation is required for stability of learning strategies, as selfish minimization of policy regret, a \textit{patient} notion of regret, might indeed still be unstable in this case. We therefore consider cooperative queues and propose the first learning decentralized algorithm guaranteeing stability of the system as long as the ratio of rates is larger than $1$, thus reaching performances comparable to centralized strategies.

Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks. In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge and may severely deteriorate the generalization performance. In this paper, we investigate and identify the limitation of several decentralized optimization algorithms for different degrees of data heterogeneity. We propose a novel momentum-based method to mitigate this decentralized training difficulty. We show in extensive empirical experiments on various CV/NLP datasets (CIFAR-10, ImageNet, and AG News) and several network topologies (Ring and Social Network) that our method is much more robust to the heterogeneity of clients' data than other existing methods, by a significant improvement in test performance ($1\% \!-\! 20\%$). Our code is publicly available.

Embedding learning of categorical features (e.g. user/item IDs) is at the core of various recommendation models including matrix factorization and neural collaborative filtering. The standard approach creates an embedding table where each row represents a dedicated embedding vector for every unique feature value. However, this method fails to efficiently handle high-cardinality features and unseen feature values (e.g. new video ID) that are prevalent in real-world recommendation systems. In this paper, we propose an alternative embedding framework Deep Hash Embedding (DHE), replacing embedding tables by a deep embedding network to compute embeddings on the fly. DHE first encodes the feature value to a unique identifier vector with multiple hashing functions and transformations, and then applies a DNN to convert the identifier vector to an embedding. The encoding module is deterministic, non-learnable, and free of storage, while the embedding network is updated during the training time to learn embedding generation. Empirical results show that DHE achieves comparable AUC against the standard one-hot full embedding, with smaller model sizes. Our work sheds light on the design of DNN-based alternative embedding schemes for categorical features without using embedding table lookup.

Training large deep neural networks on massive datasets is computationally very challenging. There has been recent surge in interest in using large batch stochastic optimization methods to tackle this issue. The most prominent algorithm in this line of research is LARS, which by employing layerwise adaptive learning rates trains ResNet on ImageNet in a few minutes. However, LARS performs poorly for attention models like BERT, indicating that its performance gains are not consistent across tasks. In this paper, we first study a principled layerwise adaptation strategy to accelerate training of deep neural networks using large mini-batches. Using this strategy, we develop a new layerwise adaptive large batch optimization technique called LAMB; we then provide convergence analysis of LAMB as well as LARS, showing convergence to a stationary point in general nonconvex settings. Our empirical results demonstrate the superior performance of LAMB across various tasks such as BERT and ResNet-50 training with very little hyperparameter tuning. In particular, for BERT training, our optimizer enables use of very large batch sizes of 32868 without any degradation of performance. By increasing the batch size to the memory limit of a TPUv3 Pod, BERT training time can be reduced from 3 days to just 76 minutes (Table 1).

Learning-to-Rank deals with maximizing the utility of a list of examples presented to the user, with items of higher relevance being prioritized. It has several practical applications such as large-scale search, recommender systems, document summarization and question answering. While there is widespread support for classification and regression based learning, support for learning-to-rank in deep learning has been limited. We propose TensorFlow Ranking, the first open source library for solving large-scale ranking problems in a deep learning framework. It is highly configurable and provides easy-to-use APIs to support different scoring mechanisms, loss functions and evaluation metrics in the learning-to-rank setting. Our library is developed on top of TensorFlow and can thus fully leverage the advantages of this platform. For example, it is highly scalable, both in training and in inference, and can be used to learn ranking models over massive amounts of user activity data, which can include heterogeneous dense and sparse features. We empirically demonstrate the effectiveness of our library in learning ranking functions for large-scale search and recommendation applications in Gmail and Google Drive. We also show that ranking models built using our model scale well for distributed training, without significant impact on metrics. The proposed library is available to the open source community, with the hope that it facilitates further academic research and industrial applications in the field of learning-to-rank.

This paper presents a hardness-aware deep metric learning (HDML) framework. Most previous deep metric learning methods employ the hard negative mining strategy to alleviate the lack of informative samples for training. However, this mining strategy only utilizes a subset of training data, which may not be enough to characterize the global geometry of the embedding space comprehensively. To address this problem, we perform linear interpolation on embeddings to adaptively manipulate their hard levels and generate corresponding label-preserving synthetics for recycled training, so that information buried in all samples can be fully exploited and the metric is always challenged with proper difficulty. Our method achieves very competitive performance on the widely used CUB-200-2011, Cars196, and Stanford Online Products datasets.

Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost. In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users' interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.

We reduce the computational cost of Neural AutoML with transfer learning. AutoML relieves human effort by automating the design of ML algorithms. Neural AutoML has become popular for the design of deep learning architectures, however, this method has a high computation cost.To address this we propose Transfer Neural AutoML that uses knowledge from prior tasks to speed up network design. We extend RL-based architecture search methods to support parallel training on multiple tasks and then transfer the search strategy to new tasks. On language and image classification data, Transfer Neural AutoML reduces convergence time over single-task training by over an order of magnitude on many tasks.

Network Virtualization is one of the most promising technologies for future networking and considered as a critical IT resource that connects distributed, virtualized Cloud Computing services and different components such as storage, servers and application. Network Virtualization allows multiple virtual networks to coexist on same shared physical infrastructure simultaneously. One of the crucial keys in Network Virtualization is Virtual Network Embedding, which provides a method to allocate physical substrate resources to virtual network requests. In this paper, we investigate Virtual Network Embedding strategies and related issues for resource allocation of an Internet Provider(InP) to efficiently embed virtual networks that are requested by Virtual Network Operators(VNOs) who share the same infrastructure provided by the InP. In order to achieve that goal, we design a heuristic Virtual Network Embedding algorithm that simultaneously embeds virtual nodes and virtual links of each virtual network request onto physic infrastructure. Through extensive simulations, we demonstrate that our proposed scheme improves significantly the performance of Virtual Network Embedding by enhancing the long-term average revenue as well as acceptance ratio and resource utilization of virtual network requests compared to prior algorithms.

We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems -- such as those presented in designing and pricing securities, constructing portfolios, and risk management -- often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory.

北京阿比特科技有限公司