We consider the problem of estimating the trace of a matrix function $f(A)$. In certain situations, in particular if $f(A)$ cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from [E. Aune, D. P. Simpson, J. Eidsvik, Parameter estimation in high dimensional Gaussian distributions, Stat. Comput., 24, pp. 247--263, 2014], we also characterize situations in which using just one stochastic vector is always -- not only in expectation -- better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.
We show that the problem of counting the number of $n$-variable unate functions reduces to the problem of counting the number of $n$-variable monotone functions. Using recently obtained results on $n$-variable monotone functions, we obtain counts of $n$-variable unate functions up to $n=9$. We use an enumeration strategy to obtain the number of $n$-variable balanced monotone functions up to $n=7$. We show that the problem of counting the number of $n$-variable balanced unate functions reduces to the problem of counting the number of $n$-variable balanced monotone functions, and consequently, we obtain the number of $n$-variable balanced unate functions up to $n=7$. Using enumeration, we obtain the numbers of equivalence classes of $n$-variable balanced monotone functions, unate functions and balanced unate functions up to $n=6$. Further, for each of the considered sub-class of $n$-variable monotone and unate functions, we also obtain the corresponding numbers of $n$-variable non-degenerate functions.
The equioscillation condition is extended to multivariate approximation. To this end, it is reformulated as the synchronized oscillations between the error maximizers and the components of a related Haar matrix kernel vector. This new condition gives rise to a multivariate equioscillation theorem where the Haar condition is not assumed and hence the existence and the characterization by equioscillation become independent of uniqueness. This allows the theorem to be applicable to problems with no strong uniqueness or even no uniqueness. A technical additional requirement on the involved Haar matrix and its kernel vector is proved to be sufficient for strong uniqueness. Instances of multivariate problems with strongly unique, unique and nonunique solutions are presented to illustrate the scope of the theorem.
Fitted finite element methods are constructed for a singularly perturbed convection-diffusion problem in two space dimensions. Exponential splines as basis functions are combined with Shishkin meshes to obtain a stable parameter-uniform numerical method. These schemes satisfy a discrete maximum principle. In the classical case, the numerical approximations converge, in the maximum pointwise norm, at a rate of second order and the approximations converge at a rate of first order for all values of the singular perturbation parameter.
We consider the problem of fitting a centered ellipsoid to $n$ standard Gaussian random vectors in $\mathbb{R}^d$, as $n, d \to \infty$ with $n/d^2 \to \alpha > 0$. It has been conjectured that this problem is, with high probability, satisfiable (SAT; that is, there exists an ellipsoid passing through all $n$ points) for $\alpha < 1/4$, and unsatisfiable (UNSAT) for $\alpha > 1/4$. In this work we give a precise analytical argument, based on the non-rigorous replica method of statistical physics, that indeed predicts a SAT/UNSAT transition at $\alpha = 1/4$, as well as the shape of a typical fitting ellipsoid in the SAT phase (i.e., the lengths of its principal axes). Besides the replica method, our main tool is the dilute limit of extensive-rank "HCIZ integrals" of random matrix theory. We further study different explicit algorithmic constructions of the matrix characterizing the ellipsoid. In particular, we show that a procedure based on minimizing its nuclear norm yields a solution in the whole SAT phase. Finally, we characterize the SAT/UNSAT transition for ellipsoid fitting of a large class of rotationally-invariant random vectors. Our work suggests mathematically rigorous ways to analyze fitting ellipsoids to random vectors, which is the topic of a companion work.
Semitopologies model consensus in distributed system by equating the notion of a quorum -- a set of participants sufficient to make local progress -- with that of an open set. This yields a topology-like theory of consensus, but semitopologies generalise topologies, since the intersection of two quorums need not necessarily be a quorum. The semitopological model of consensus is naturally heterogeneous and local, just like topologies can be heterogenous and local, and for the same reasons: points may have different quorums and there is no restriction that open sets / quorums be uniformly generated (e.g. open sets can be something other than two-thirds majorities of the points in the space). Semiframes are an algebraic abstraction of semitopologies. They are to semitopologies as frames are to topologies. We give a notion of semifilter, which plays a role analogous to filters, and show how to build a semiframe out of the open sets of a semitopology, and a semitopology out of the semifilters of a semiframe. We define suitable notions of category and morphism and prove a categorical duality between (sober) semiframes and (spatial) semitopologies, and investigate well-behavedness properties on semitopologies and semiframes across the duality. Surprisingly, the structure of semiframes is not what one might initially expect just from looking at semitopologies, and the canonical structure required for the duality result -- a compatibility relation *, generalising sets intersection -- is also canonical for expressing well-behavedness properties. Overall, we deliver a new categorical, algebraic, abstract framework within which to study consensus on distributed systems, and which is also simply interesting to consider as a mathematical theory in its own right.
We consider the problem of counting 4-cycles ($C_4$) in an undirected graph $G$ of $n$ vertices and $m$ edges (in bipartite graphs, 4-cycles are also often referred to as $\textit{butterflies}$). There have been a number of previous algorithms for this problem based on sorting the graph by degree and using randomized hash tables. These are appealing in theory due to compact storage and fast access on average. But, the performance of hash tables can degrade unpredictably and are also vulnerable to adversarial input. We develop a new simpler algorithm for counting $C_4$ requiring $O(m\bar\delta(G))$ time and $O(n)$ space, where $\bar \delta(G) \leq O(\sqrt{m})$ is the $\textit{average degeneracy}$ parameter introduced by Burkhardt, Faber \& Harris (2020). It has several practical improvements over previous algorithms; for example, it is fully deterministic, does not require any sorting of the input graph, and uses only addition and array access in its inner loops. To the best of our knowledge, all previous efficient algorithms for $C_4$ counting have required $\Omega(m)$ space in addition to storing the input graph. Our algorithm is very simple and easily adapted to count 4-cycles incident to each vertex and edge. Empirical tests demonstrate that our array-based approach is $4\times$ -- $7\times$ faster on average compared to popular hash table implementations.
We present a reduced basis stochastic Galerkin method for partial differential equations with random inputs. In this method, the reduced basis methodology is integrated into the stochastic Galerkin method, resulting in a significant reduction in the cost of solving the Galerkin system. To reduce the main cost of matrix-vector manipulation involved in our reduced basis stochastic Galerkin approach, the secant method is applied to identify the number of reduced basis functions. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.
We consider the two-pronged fork frame $F$ and the variety $\mathbf{Eq}(B_F)$ generated by its dual closure algebra $B_F$. We describe the finite projective algebras in $\mathbf{Eq}(B_F)$ and give a purely semantic proof that unification in $\mathbf{Eq}(B_F)$ is finitary and not unitary.