We consider the penalized distributionally robust optimization (DRO) problem with a closed, convex uncertainty set, a setting that encompasses the $f$-DRO, Wasserstein-DRO, and spectral/$L$-risk formulations used in practice. We present Drago, a stochastic primal-dual algorithm that achieves a state-of-the-art linear convergence rate on strongly convex-strongly concave DRO problems. The method combines both randomized and cyclic components with mini-batching, which effectively handles the unique asymmetric nature of the primal and dual problems in DRO. We support our theoretical results with numerical benchmarks in classification and regression.
Network coordination is considered in three basic settings, characterizing the generation of separable and classical-quantum correlations among multiple parties. First, we consider the simulation of a classical-quantum state between two nodes with rate-limited common randomness (CR) and communication. Furthermore, we study the preparation of a separable state between multiple nodes with rate-limited CR and no communication. At last, we consider a broadcast setting, where a sender and two receivers simulate a classical-quantum-quantum state using rate-limited CR and communication. We establish the optimal tradeoff between communication and CR rates in each setting.
Candecomp / PARAFAC (CP) decomposition, a generalization of the matrix singular value decomposition to higher-dimensional tensors, is a popular tool for analyzing multidimensional sparse data. On tensors with billions of nonzero entries, computing a CP decomposition is a computationally intensive task. We propose the first distributed-memory implementations of two randomized CP decomposition algorithms, CP-ARLS-LEV and STS-CP, that offer nearly an order-of-magnitude speedup at high decomposition ranks over well-tuned non-randomized decomposition packages. Both algorithms rely on leverage score sampling and enjoy strong theoretical guarantees, each with varying time and accuracy tradeoffs. We tailor the communication schedule for our random sampling algorithms, eliminating expensive reduction collectives and forcing communication costs to scale with the random sample count. Finally, we optimize the local storage format for our methods, switching between analogues of compressed sparse column and compressed sparse row formats. Experiments show that our methods are fast and scalable, producing 11x speedup over SPLATT by decomposing the billion-scale Reddit tensor on 512 CPU cores in under two minutes.
Modeling non-stationary data is a challenging problem in the field of continual learning, and data distribution shifts may result in negative consequences on the performance of a machine learning model. Classic learning tools are often vulnerable to perturbations of the input covariates, and are sensitive to outliers and noise, and some tools are based on rigid algebraic assumptions. Distribution shifts are frequently occurring due to changes in raw materials for production, seasonality, a different user base, or even adversarial attacks. Therefore, there is a need for more effective distribution shift detection techniques. In this work, we propose a continual learning framework for monitoring and detecting distribution changes. We explore the problem in a latent space generated by a bio-inspired self-organizing clustering and statistical aspects of the latent space. In particular, we investigate the projections made by two topology-preserving maps: the Self-Organizing Map and the Scale Invariant Map. Our method can be applied in both a supervised and an unsupervised context. We construct the assessment of changes in the data distribution as a comparison of Gaussian signals, making the proposed method fast and robust. We compare it to other unsupervised techniques, specifically Principal Component Analysis (PCA) and Kernel-PCA. Our comparison involves conducting experiments using sequences of images (based on MNIST and injected shifts with adversarial samples), chemical sensor measurements, and the environmental variable related to ozone levels. The empirical study reveals the potential of the proposed approach.
In this paper we consider the filtering problem associated to partially observed McKean-Vlasov stochastic differential equations (SDEs). The model consists of data that are observed at regular and discrete times and the objective is to compute the conditional expectation of (functionals) of the solutions of the SDE at the current time. This problem, even the ordinary SDE case is challenging and requires numerical approximations. Based upon the ideas in [3, 12] we develop a new particle filter (PF) and multilevel particle filter (MLPF) to approximate the afore-mentioned expectations. We prove under assumptions that, for $\epsilon>0$, to obtain a mean square error of $\mathcal{O}(\epsilon^2)$ the PF has a cost per-observation time of $\mathcal{O}(\epsilon^{-5})$ and the MLPF costs $\mathcal{O}(\epsilon^{-4})$ (best case) or $\mathcal{O}(\epsilon^{-4}\log(\epsilon)^2)$ (worst case). Our theoretical results are supported by numerical experiments.
It is well-known that extending the Hilbert axiomatic system for first-order intuitionistic logic with an exclusion operator, that is dual to implication, collapses the domains in the model into a constant domain. This makes it a very challenging problem to find a sound and complete proof system for first-order bi-intuitionistic logic with non-constant domains, that is also conservative over first-order intuitionistic logic. We solve this problem by presenting the first sound and complete proof system for first-order bi-intuitionistic logic with increasing domains. We formalize our proof system in a labeled polytree sequent calculus (a notational variant of nested sequents), and prove that it enjoys cut-elimination and is conservative over first-order intuitionistic logic. A key feature of our calculus is an explicit eigenvariable context, which allows us to control precisely the scope of free variables in a polytree structure. Semantically this context can be seen as encoding a notion of Scott's existence predicate for intuitionistic logic. This turns out to be crucial to avoid the collapse of domains and to prove the completeness of our proof system. The explicit consideration of the variable context in a formula sheds light on a previously overlooked dependency between the residuation principle and the existence predicate in the first-order setting, that may help explain the difficulty in obtaining a complete proof system for first-order bi-intuitionistic logic.
Near-field propagation, particularly that enabled by reconfigurable intelligent surfaces (RIS), has emerged as a promising research topic in recent years. However, a comprehensive literature review on RIS-based near-field technologies is still lacking. This article aims to fill this gap by providing a brief overview of near-field concepts and a systematic survey of the state-of-the-art RIS-based near-field technologies. The focus is on three key aspects: the construction of ubiquitous near-field wireless propagation environments using RIS, the enabling of new near-field paradigms for 6G networks through RIS, and the challenges faced by RIS-based near-field technologies. This technical review intends to facilitate the development and innovation of RIS-based near-field technologies.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.