In this work, we consider the numerical computation of ground states and dynamics of single-component Bose-Einstein condensates (BECs). The corresponding models are spatially discretized with a multiscale finite element approach known as Localized Orthogonal Decomposition (LOD). Despite the outstanding approximation properties of such a discretization in the context of BECs, taking full advantage of it without creating severe computational bottlenecks can be tricky. In this paper, we therefore present two fully-discrete numerical approaches that are formulated in such a way that they take special account of the structure of the LOD spaces. One approach is devoted to the computation of ground states and another one for the computation of dynamics. A central focus of this paper is also the discussion of implementation aspects that are very important for the practical realization of the methods. In particular, we discuss the use of suitable data structures that keep the memory costs economical. The paper concludes with various numerical experiments in 1d, 2d and 3d that investigate convergence rates and approximation properties of the methods and which demonstrate their performance and computational efficiency, also in comparison to spectral and standard finite element approaches.
Compared to widely used likelihood-based approaches, the minimum contrast (MC) method offers a computationally efficient method for estimation and inference of spatial point processes. These relative gains in computing time become more pronounced when analyzing complicated multivariate point process models. Despite this, there has been little exploration of the MC method for multivariate spatial point processes. Therefore, this article introduces a new MC method for parametric multivariate spatial point processes. A contrast function is computed based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, we derive the asymptotic normality of our MC estimator. The performance of the proposed method is demonstrated through simulation studies of bivariate log-Gaussian Cox processes and five-variate product-shot-noise Cox processes.
In the common partially linear single-index model we establish a Bahadur representation for a smoothing spline estimator of all model parameters and use this result to prove the joint weak convergence of the estimator of the index link function at a given point, together with the estimators of the parametric regression coefficients. We obtain the surprising result that, despite of the nature of single-index models where the link function is evaluated at a linear combination of the index-coefficients, the estimator of the link function and the estimator of the index-coefficients are asymptotically independent. Our approach leverages a delicate analysis based on reproducing kernel Hilbert space and empirical process theory. We show that the smoothing spline estimator achieves the minimax optimal rate with respect to the $L^2$-risk and consider several statistical applications where joint inference on all model parameters is of interest. In particular, we develop a simultaneous confidence band for the link function and propose inference tools to investigate if the maximum absolute deviation between the (unknown) link function and a given function exceeds a given threshold. We also construct tests for joint hypotheses regarding model parameters which involve both the nonparametric and parametric components and propose novel multiplier bootstrap procedures to avoid the estimation of unknown asymptotic quantities.
We consider the meshless approximation for solutions of boundary value problems (BVPs) of elliptic Partial Differential Equations (PDEs) via symmetric kernel collocation. We discuss the importance of the choice of the collocation points, in particular by using greedy kernel methods. We introduce a scale of PDE-greedy selection criteria that generalizes existing techniques, such as the PDE-P -greedy and the PDE-f -greedy rules for collocation point selection. For these greedy selection criteria we provide bounds on the approximation error in terms of the number of greedily selected points and analyze the corresponding convergence rates. This is achieved by a novel analysis of Kolmogorov widths of special sets of BVP point-evaluation functionals. Especially, we prove that target-data dependent algorithms that make use of the right hand side functions of the BVP exhibit faster convergence rates than the target-data independent PDE-P -greedy. The convergence rate of the PDE-f -greedy possesses a dimension independent rate, which makes it amenable to mitigate the curse of dimensionality. The advantages of these greedy algorithms are highlighted by numerical examples.
In shape-constrained nonparametric inference, it is often necessary to perform preliminary tests to verify whether a probability mass function (p.m.f.) satisfies qualitative constraints such as monotonicity, convexity or in general $k$-monotonicity. In this paper, we are interested in testing $k$-monotonicity of a compactly supported p.m.f. and we put our main focus on monotonicity and convexity; i.e., $k \in \{1,2\}$. We consider new testing procedures that are directly derived from the definition of $k$-monotonicity and rely exclusively on the empirical measure, as well as tests that are based on the projection of the empirical measure on the class of $k$-monotone p.m.f.s. The asymptotic behaviour of the introduced test statistics is derived and a simulation study is performed to assess the finite sample performance of all the proposed tests. Applications to real datasets are presented to illustrate the theory.
In this contribution we study the formal ability of a multi-resolution-times lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution. More precisely, we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments. The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme. We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes with at most 33 velocities. In some cases, it is not possible to fit exactly the physical model. For several examples, we adjust the Navier Stokes equations and propose nontrivial expressions for the equilibria.
With the goal of obtaining strong relaxations for binary polynomial optimization problems, we introduce the pseudo-Boolean polytope defined as the convex hull of the set of binary points satisfying a collection of equations containing pseudo-Boolean functions. By representing the pseudo-Boolean polytope via a signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size extended formulation. Our new framework unifies and extends all prior results on the existence of polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial optimization problems of degree at least three.
In this paper, we propose a new algorithm, the irrational-window-filter projection method (IWFPM), for solving arbitrary dimensional global quasiperiodic systems. Based on the projection method (PM), IWFPM further utilizes the concentrated distribution of Fourier coefficients to filter out relevant spectral points using an irrational window. Moreover, a corresponding index-shift transform is designed to make the Fast Fourier Transform available. The corresponding error analysis on the function approximation level is also given. We apply IWFPM to 1D, 2D, and 3D quasiperiodic Schr\"odinger eigenproblems to demonstrate its accuracy and efficiency. IWFPM exhibits a significant computational advantage over PM for both extended and localized quantum states. Furthermore, the widespread existence of such spectral point distribution feature can endow IWFPM with significant potential for broader applications in quasiperiodic systems.
This work aims to introduce a heuristic timestep-adaptive algorithm for Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI) problems where the flow is dominated by the pressure. In such scenarios, many time-adaptive algorithms based on the interplay of implicit and explicit time schemes fail to capture the fast transient dynamics of pressure fields. We present an algorithm that relies on a temporal error estimator using Backward Differentiation Formulae (BDF$k$) of order $k=2,3$. Specifically, we demonstrate that the implicit BDF$3$ solution can be well approximated by applying a single Newton-type nonlinear solver correction to the implicit BDF$2$ solution. The difference between these solutions determines our adaptive temporal error estimator. The effectiveness of our approach is confirmed by numerical experiments conducted on a backward-facing step flow CFD test case with Reynolds number $300$ and on a two-dimensional haemodynamics FSI benchmark.
To analyze the topological properties of the given discrete data, one needs to consider a continuous transform called filtration. Persistent homology serves as a tool to track changes of homology in the filtration. The outcome of the topological analysis of data varies depending on the choice of filtration, making the selection of filtration crucial. Filtration learning is an attempt to find an optimal filtration that minimizes the loss function. Exact Multi-parameter Persistent Homology (EMPH) has been recently proposed, particularly for topological time-series analysis, that utilizes the exact formula of rank invariant instead of calculating it. In this paper, we propose a framework for filtration learning of EMPH. We formulate an optimization problem and propose an algorithm for solving the problem. We then apply the proposed algorithm to several classification problems. Particularly, we derive the exact formula of the gradient of the loss function with respect to the filtration parameter, which makes it possible to directly update the filtration without using automatic differentiation, significantly enhancing the learning process.
In this work we propose and analyse a structure-preserving approximation of the non-isothermal Cahn-Hilliard-Navier-Stokes system using conforming finite elements in space and implicit time discretisation with convex-concave splitting. The system is first reformulated into a variational form which reveal the structure of the equations, which is then used in the subsequent approximation.