Probabilistic programming languages rely fundamentally on some notion of sampling, and this is doubly true for probabilistic programming languages which perform Bayesian inference using Monte Carlo techniques. Verifying samplers - proving that they generate samples from the correct distribution - is crucial to the use of probabilistic programming languages for statistical modelling and inference. However, the typical denotational semantics of probabilistic programs is incompatible with deterministic notions of sampling. This is problematic, considering that most statistical inference is performed using pseudorandom number generators. We present a higher-order probabilistic programming language centred on the notion of samplers and sampler operations. We give this language an operational and denotational semantics in terms of continuous maps between topological spaces. Our language also supports discontinuous operations, such as comparisons between reals, by using the type system to track discontinuities. This feature might be of independent interest, for example in the context of differentiable programming. Using this language, we develop tools for the formal verification of sampler correctness. We present an equational calculus to reason about equivalence of samplers, and a sound calculus to prove semantic correctness of samplers, i.e. that a sampler correctly targets a given measure by construction.
Parameter inference for ordinary differential equations (ODEs) is of fundamental importance in many scientific applications. While ODE solutions are typically approximated by deterministic algorithms, new research on probabilistic solvers indicates that they produce more reliable parameter estimates by better accounting for numerical errors. However, many ODE systems are highly sensitive to their parameter values. This produces deep local minima in the likelihood function -- a problem which existing probabilistic solvers have yet to resolve. Here, we show that a Bayesian filtering paradigm for probabilistic ODE solution can dramatically reduce sensitivity to parameters by learning from the noisy ODE observations in a data-adaptive manner. Our method is applicable to ODEs with partially unobserved components and with arbitrary non-Gaussian noise. Several examples demonstrate that it is more accurate than existing probabilistic ODE solvers, and even in some cases than the exact ODE likelihood.
The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. This enables faster and more efficient simulations, without sacrificing accuracy. More precisely, we consider an isogeometric discretisation of an elliptic model problem defined on a two-dimensional hierarchical B-spline computational domain with a complex boundary. Starting with an oversimplification of the geometry, we build a goal-oriented adaptive strategy that adaptively reintroduces continuous geometrical features in regions where the analysis suggests a large impact on the quantity of interest. This strategy is driven by an a posteriori estimator of the defeaturing error based on first-order shape sensitivity analysis, and it profits from the local refinement properties of hierarchical B-splines. The adaptive algorithm is described together with a procedure to generate (partially) simplified hierarchical B-spline geometrical domains. Numerical experiments are presented to illustrate the proposed strategy and its limitations.
Image classification is one of the most fundamental tasks in Computer Vision. In practical applications, the datasets are usually not as abundant as those in the laboratory and simulation, which is always called as Data Hungry. How to extract the information of data more completely and effectively is very important. Therefore, an Adaptive Data Augmentation Framework based on the tensor T-product Operator is proposed in this paper, to triple one image data to be trained and gain the result from all these three images together with only less than 0.1% increase in the number of parameters. At the same time, this framework serves the functions of column image embedding and global feature intersection, enabling the model to obtain information in not only spatial but frequency domain, and thus improving the prediction accuracy of the model. Numerical experiments have been designed for several models, and the results demonstrate the effectiveness of this adaptive framework. Numerical experiments show that our data augmentation framework can improve the performance of original neural network model by 2%, which provides competitive results to state-of-the-art methods.
Deciding formulas mixing arithmetic and uninterpreted predicates is of practical interest, notably for applications in verification. Some decision procedures consist in building by structural induction an automaton that recognizes the set of models of the formula under analysis, and then testing whether this automaton accepts a non-empty language. A drawback is that universal quantification is usually handled by a reduction to existential quantification and complementation. For logical formalisms in which models are encoded as infinite words, this hinders the practical use of this method due to the difficulty of complementing infinite-word automata. The contribution of this paper is to introduce an algorithm for directly computing the effect of universal first-order quantifiers on automata recognizing sets of models, for formulas involving natural numbers encoded in unary notation. This makes it possible to apply the automata-based approach to obtain implementable decision procedures for various arithmetic theories.
There is a long-standing problem of repeated patterns in correspondence problems, where mismatches frequently occur because of inherent ambiguity. The unique position information associated with repeated patterns makes coordinate representations a useful supplement to appearance representations for improving feature correspondences. However, the issue of appropriate coordinate representation has remained unresolved. In this study, we demonstrate that geometric-invariant coordinate representations, such as barycentric coordinates, can significantly reduce mismatches between features. The first step is to establish a theoretical foundation for geometrically invariant coordinates. We present a seed matching and filtering network (SMFNet) that combines feature matching and consistency filtering with a coarse-to-fine matching strategy in order to acquire reliable sparse correspondences. We then introduce DEGREE, a novel anchor-to-barycentric (A2B) coordinate encoding approach, which generates multiple affine-invariant correspondence coordinates from paired images. DEGREE can be used as a plug-in with standard descriptors, feature matchers, and consistency filters to improve the matching quality. Extensive experiments in synthesized indoor and outdoor datasets demonstrate that DEGREE alleviates the problem of repeated patterns and helps achieve state-of-the-art performance. Furthermore, DEGREE also reports competitive performance in the third Image Matching Challenge at CVPR 2021. This approach offers a new perspective to alleviate the problem of repeated patterns and emphasizes the importance of choosing coordinate representations for feature correspondences.
A parametric class of trust-region algorithms for unconstrained nonconvex optimization is considered where the value of the objective function is never computed. The class contains a deterministic version of the first-order Adagrad method typically used for minimization of noisy function, but also allows the use of (possibly approximate) second-order information when available. The rate of convergence of methods in the class is analyzed and is shown to be identical to that known for first-order optimization methods using both function and gradients values, recovering existing results for purely-first order variants and improving the explicit dependence on problem dimension. This rate is shown to be essentially sharp. A new class of methods is also presented, for which a slightly worse and essentially sharp complexity result holds. Limited numerical experiments show that the new methods' performance may be comparable to that of standard steepest descent, despite using significantly less information, and that this performance is relatively insensitive to noise.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.