Dynamic resource allocation problems are ubiquitous, arising in inventory management, order fulfillment, online advertising, and other applications. We initially focus on one of the simplest models of online resource allocation: the multisecretary problem. In the multisecretary problem, a decision maker sequentially hires up to $B$ out of $T$ candidates, and candidate ability values are drawn i.i.d. from a distribution $F$ on $[0,1]$. First, we investigate fundamental limits on performance as a function of the value distribution under consideration. We quantify performance in terms of regret, defined as the additive loss relative to the best performance achievable in hindsight. We present a novel fundamental regret lower bound scaling of $\Omega(T^{1/2 - 1/2(1 + \beta)})$ for distributions with gaps in their support, with $\beta$ quantifying the mass accumulation of types (values) around these gaps. This lower bound contrasts with the constant and logarithmic regret guarantees shown to be achievable in prior work, under specific assumptions on the value distribution. Second, we introduce a novel algorithmic principle, Conservativeness with respect to Gaps (CwG), which yields near-optimal performance with regret scaling of $\tilde{O}(T^{1/2 - 1/2(1 + \beta)})$ for any distribution in a class parameterized by the mass accumulation parameter $\beta$. We then turn to operationalizing the CwG principle across dynamic resource allocation problems. We study a general and practical algorithm, Repeatedly Act using Multiple Simulations (RAMS), which simulates possible futures to estimate a hindsight-based approximation of the value-to-go function. We establish that this algorithm inherits theoretical performance guarantees of algorithms tailored to the distribution of resource requests, including our CwG-based algorithm, and find that it outperforms them in numerical experiments.
Do neural networks, trained on well-understood algorithmic tasks, reliably rediscover known algorithms for solving those tasks? Several recent studies, on tasks ranging from group arithmetic to in-context linear regression, have suggested that the answer is yes. Using modular addition as a prototypical problem, we show that algorithm discovery in neural networks is sometimes more complex. Small changes to model hyperparameters and initializations can induce the discovery of qualitatively different algorithms from a fixed training set, and even parallel implementations of multiple such algorithms. Some networks trained to perform modular addition implement a familiar Clock algorithm; others implement a previously undescribed, less intuitive, but comprehensible procedure which we term the Pizza algorithm, or a variety of even more complex procedures. Our results show that even simple learning problems can admit a surprising diversity of solutions, motivating the development of new tools for characterizing the behavior of neural networks across their algorithmic phase space.
Synthesizing medical images while preserving their structural information is crucial in medical research. In such scenarios, the preservation of anatomical content becomes especially important. Although recent advances have been made by incorporating instance-level information to guide translation, these methods overlook the spatial coherence of structural-level representation and the anatomical invariance of content during translation. To address these issues, we introduce hierarchical granularity discrimination, which exploits various levels of semantic information present in medical images. Our strategy utilizes three levels of discrimination granularity: pixel-level discrimination using a Brain Memory Bank, structure-level discrimination on each brain structure with a re-weighting strategy to focus on hard samples, and global-level discrimination to ensure anatomical consistency during translation. The image translation performance of our strategy has been evaluated on three independent datasets (UK Biobank, IXI, and BraTS 2018), and it has outperformed state-of-the-art algorithms. Particularly, our model excels not only in synthesizing normal structures but also in handling abnormal (pathological) structures, such as brain tumors, despite the variations in contrast observed across different imaging modalities due to their pathological characteristics. The diagnostic value of synthesized MR images containing brain tumors has been evaluated by radiologists. This indicates that our model may offer an alternative solution in scenarios where specific MR modalities of patients are unavailable. Extensive experiments further demonstrate the versatility of our method, providing unique insights into medical image translation.
Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation be confined to a local window and cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k $\times$ k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. It is obvious that the shape and size of targets are various in different datasets and at different locations. Convolutional kernels with fixed sample shapes and squares do not adapt well to changing targets. In response to the above questions, the Alterable Kernel Convolution (AKConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In AKConv, we define initial positions for convolutional kernels of arbitrary size by means of a new coordinate generation algorithm. To adapt to changes for targets, we introduce offsets to adjust the shape of the samples at each position. Moreover, we explore the effect of the neural network by using the AKConv with the same size and different initial sampled shapes. AKConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampling shapes. Object detection experiments on representative datasets COCO2017, VOC 7+12 and VisDrone-DET2021 fully demonstrate the advantages of AKConv. AKConv can be used as a plug-and-play convolutional operation to replace convolutional operations to improve network performance. The code for the relevant tasks can be found at //github.com/CV-ZhangXin/AKConv.
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance systems, enabling the temporal or spatial identification of anomalous events within videos. While existing reviews predominantly concentrate on conventional unsupervised methods, they often overlook the emergence of weakly-supervised and fully-unsupervised approaches. To address this gap, this survey extends the conventional scope of VAD beyond unsupervised methods, encompassing a broader spectrum termed Generalized Video Anomaly Event Detection (GVAED). By skillfully incorporating recent advancements rooted in diverse assumptions and learning frameworks, this survey introduces an intuitive taxonomy that seamlessly navigates through unsupervised, weakly-supervised, supervised and fully-unsupervised VAD methodologies, elucidating the distinctions and interconnections within these research trajectories. In addition, this survey facilitates prospective researchers by assembling a compilation of research resources, including public datasets, available codebases, programming tools, and pertinent literature. Furthermore, this survey quantitatively assesses model performance, delves into research challenges and directions, and outlines potential avenues for future exploration.
Advancements in clinical treatment and research are limited by supervised learning techniques that rely on large amounts of annotated data, an expensive task requiring many hours of clinical specialists' time. In this paper, we propose using self-supervised and semi-supervised learning. These techniques perform an auxiliary task that is label-free, scaling up machine-supervision is easier compared with fully-supervised techniques. This paper proposes S4MI (Self-Supervision and Semi-Supervision for Medical Imaging), our pipeline to leverage advances in self and semi-supervision learning. We benchmark them on three medical imaging datasets to analyze their efficacy for classification and segmentation. This advancement in self-supervised learning with 10% annotation performed better than 100% annotation for the classification of most datasets. The semi-supervised approach yielded favorable outcomes for segmentation, outperforming the fully-supervised approach by using 50% fewer labels in all three datasets.
Cyberattacks have grown into a major risk for organizations, with common consequences being data theft, sabotage, and extortion. Since preventive measures do not suffice to repel attacks, timely detection of successful intruders is crucial to stop them from reaching their final goals. For this purpose, many organizations utilize Security Information and Event Management (SIEM) systems to centrally collect security-related events and scan them for attack indicators using expert-written detection rules. However, as we show by analyzing a set of widespread SIEM detection rules, adversaries can evade almost half of them easily, allowing them to perform common malicious actions within an enterprise network without being detected. To remedy these critical detection blind spots, we propose the idea of adaptive misuse detection, which utilizes machine learning to compare incoming events to SIEM rules on the one hand and known-benign events on the other hand to discover successful evasions. Based on this idea, we present AMIDES, an open-source proof-of-concept adaptive misuse detection system. Using four weeks of SIEM events from a large enterprise network and more than 500 hand-crafted evasions, we show that AMIDES successfully detects a majority of these evasions without any false alerts. In addition, AMIDES eases alert analysis by assessing which rules were evaded. Its computational efficiency qualifies AMIDES for real-world operation and hence enables organizations to significantly reduce detection blind spots with moderate effort.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.