Trusted Platform Modules (TPMs), which serve as the root of trust in secure systems, are secure crypto-processors that carry out cryptographic primitives. Should large-scale quantum computing become a reality, the cryptographic primitives adopted in the TPM 2.0 standard will no longer be secure. Thus, the design of TPMs that provide Quantum Resistant (QR) primitives is of utmost importance, in particular with the restrictions imposed by embedded systems. In this paper, we investigate the deployment of QR primitives and protocols in the standard TPM 2.0. Cryptographic algorithms that are already in the NIST QR cryptography standardization process, as well as an Oblivious Transfer (OT), a fundamental cryptographic primitive, are the QR cryptographic schemes selected to extend TPM 2.0. In particular, the Kyber algorithm for key encapsulation, the Dilithium algorithm for digital signature, and a 3-round Random Oblivious Transfer (ROT) protocol, supporting protocols such as Multi-Party Computation and Private Set Intersection (PSI). The QR extended TPM 2.0 is implemented in ARM and RISC-V embedded processors, its computational requirements are analysed and experimentally evaluated in comparison to the standard TPM. It is shown that Kyber and Dilithium are faster at creating keys than RSA, due to the key size and secure random sampling required in RSA, while they meet the same performance level as ECC. For digital signatures, both in signature creation and verification, Dilithium is on par with RSA and ECC. The ROT protocol shows decent performance and its support required small modifications to the TPM. This paper also shows that it would be possible to backport the required code to already available TPMs to ensure that current TPMs remain secure against quantum adversaries.
Human-robot interaction (HRI) systems need to build trust with people of diverse identities. This position paper argues that queer (LGBTQIA+) people must be included in the design and evaluation of HRI systems to ensure their trust in and acceptance of robots. Queer people have faced discrimination and harm from artificial intelligence and robotic systems. Despite calls for increased diversity and inclusion, HRI has not systemically addressed queer issues. This paper suggests three approaches to address trust in queer HRI: diversifying human-subject pools, centering queer people in HRI studies, and contextualizing measures of trust.
Quasi-Monte Carlo (QMC) methods have developed over several decades. With the explosion in computational science, there is a need for great software that implements QMC algorithms. We summarize the QMC software that has been developed to date, propose some criteria for developing great QMC software, and suggest some steps toward achieving great software. We illustrate these criteria and steps with the Quasi-Monte Carlo Python library (QMCPy), an open-source community software framework, extensible by design with common programming interfaces to an increasing number of existing or emerging QMC libraries developed by the greater community of QMC researchers.
Robustness has become an important consideration in deep learning. With the help of explainable AI, mismatches between an explained model's decision strategy and the user's domain knowledge (e.g. Clever Hans effects) have been identified as a starting point for improving faulty models. However, it is less clear what to do when the user and the explanation agree. In this paper, we demonstrate that acceptance of explanations by the user is not a guarantee for a machine learning model to be robust against Clever Hans effects, which may remain undetected. Such hidden flaws of the model can nevertheless be mitigated, and we demonstrate this by contributing a new method, Explanation-Guided Exposure Minimization (EGEM), that preemptively prunes variations in the ML model that have not been the subject of positive explanation feedback. Experiments demonstrate that our approach leads to models that strongly reduce their reliance on hidden Clever Hans strategies, and consequently achieve higher accuracy on new data.
We address the problem of keypoint selection, and find that the performance of 6DoF pose estimation methods can be improved when pre-defined keypoint locations are learned, rather than being heuristically selected as has been the standard approach. We found that accuracy and efficiency can be improved by training a graph network to select a set of disperse keypoints with similarly distributed votes. These votes, learned by a regression network to accumulate evidence for the keypoint locations, can be regressed more accurately compared to previous heuristic keypoint algorithms. The proposed KeyGNet, supervised by a combined loss measuring both Wasserstein distance and dispersion, learns the color and geometry features of the target objects to estimate optimal keypoint locations. Experiments demonstrate the keypoints selected by KeyGNet improved the accuracy for all evaluation metrics of all seven datasets tested, for three keypoint voting methods. The challenging Occlusion LINEMOD dataset notably improved ADD(S) by +16.4% on PVN3D, and all core BOP datasets showed an AR improvement for all objects, of between +1% and +21.5%. There was also a notable increase in performance when transitioning from single object to multiple object training using KeyGNet keypoints, essentially eliminating the SISO-MIMO gap for Occlusion LINEMOD.
The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.