This work presents a novel global digital image correlation (DIC) method, based on a newly developed convolution finite element (C-FE) approximation. The convolution approximation can rely on the mesh of linear finite elements and enables arbitrarily high order approximations without adding more degrees of freedom. Therefore, the C-FE based DIC can be more accurate than {the} usual FE based DIC by providing highly smooth and accurate displacement and strain results with the same element size. The detailed formulation and implementation of the method have been discussed in this work. The controlling parameters in the method include the polynomial order, patch size, and dilation. A general choice of the parameters and their potential adaptivity have been discussed. The proposed DIC method has been tested by several representative examples, including the DIC challenge 2.0 benchmark problems, with comparison to the usual FE based DIC. C-FE outperformed FE in all the DIC results for the tested examples. This work demonstrates the potential of C-FE and opens a new avenue to enable highly smooth, accurate, and robust DIC analysis for full-field displacement and strain measurements.
An a posteriori error estimator based on an equilibrated flux reconstruction is proposed for defeaturing problems in the context of finite element discretizations. Defeaturing consists in the simplification of a geometry by removing features that are considered not relevant for the approximation of the solution of a given PDE. In this work, the focus is on Poisson equation with Neumann boundary conditions on the feature boundary. The estimator accounts both for the so-called defeaturing error and for the numerical error committed by approximating the solution on the defeatured domain. Unlike other estimators that were previously proposed for defeaturing problems, the use of the equilibrated flux reconstruction allows to obtain a sharp bound for the numerical component of the error. Furthermore, it does not require the evaluation of the normal trace of the numerical flux on the feature boundary: this makes the estimator well-suited for finite element discretizations, in which the normal trace of the numerical flux is typically discontinuous across elements. The reliability of the estimator is proven and verified on several numerical examples. Its capability to identify the most relevant features is also shown, in anticipation of a future application to an adaptive strategy.
This paper introduces a new theoretical and computational framework for a data driven Koopman mode analysis of nonlinear dynamics. To alleviate the potential problem of ill-conditioned eigenvectors in the existing implementations of the Dynamic Mode Decomposition (DMD) and the Extended Dynamic Mode Decomposition (EDMD), the new method introduces a Koopman-Schur decomposition that is entirely based on unitary transformations. The analysis in terms of the eigenvectors as modes of a Koopman operator compression is replaced with a modal decomposition in terms of a flag of invariant subspaces that correspond to selected eigenvalues. The main computational tool from the numerical linear algebra is the partial ordered Schur decomposition that provides convenient orthonormal bases for these subspaces. In the case of real data, a real Schur form is used and the computation is based on real orthogonal transformations. The new computational scheme is presented in the framework of the Extended DMD and the kernel trick is used.
This paper presents the first application of the direct parametrisation method for invariant manifolds to a fully coupled multiphysics problem involving the nonlinear vibrations of deformable structures subjected to an electrostatic field. The formulation proposed is intended for model order reduction of electrostatically actuated resonating Micro-Electro-Mechanical Systems (MEMS). The continuous problem is first rewritten in a manner that can be directly handled by the parametrisation method, which relies upon automated asymptotic expansions. A new mixed fully Lagrangian formulation is thus proposed which contains only explicit polynomial nonlinearities, which is then discretised in the framework of finite element procedures. Validation is performed on the classical parallel plate configuration, where different formulations using either the general framework, or an approximation of the electrostatic field due to the geometric configuration selected, are compared. Reduced-order models along these formulations are also compared to full-order simulations operated with a time integration approach. Numerical results show a remarkable performance both in terms of accuracy and wealth of nonlinear effects that can be accounted for. In particular, the transition from hardening to softening behaviour of the primary resonance while increasing the constant voltage component of the electric actuation, is recovered. Secondary resonances leading to superharmonic and parametric resonances are also investigated with the reduced-order model.
Microring resonators (MRRs) are promising devices for time-delay photonic reservoir computing, but the impact of the different physical effects taking place in the MRRs on the reservoir computing performance is yet to be fully understood. We numerically analyze the impact of linear losses as well as thermo-optic and free-carrier effects relaxation times on the prediction error of the time-series task NARMA-10. We demonstrate the existence of three regions, defined by the input power and the frequency detuning between the optical source and the microring resonance, that reveal the cavity transition from linear to nonlinear regimes. One of these regions offers very low error in time-series prediction under relatively low input power and number of nodes while the other regions either lack nonlinearity or become unstable. This study provides insight into the design of the MRR and the optimization of its physical properties for improving the prediction performance of time-delay reservoir computing.
We provide a non-unit disk framework to solve combinatorial optimization problems such as Maximum Cut (Max-Cut) and Maximum Independent Set (MIS) on a Rydberg quantum annealer. Our setup consists of a many-body interacting Rydberg system where locally controllable light shifts are applied to individual qubits in order to map the graph problem onto the Ising spin model. Exploiting the flexibility that optical tweezers offer in terms of spatial arrangement, our numerical simulations implement the local-detuning protocol while globally driving the Rydberg annealer to the desired many-body ground state, which is also the solution to the optimization problem. Using optimal control methods, these solutions are obtained for prototype graphs with varying sizes at time scales well within the system lifetime and with approximation ratios close to one. The non-blockade approach facilitates the encoding of graph problems with specific topologies that can be realized in two-dimensional Rydberg configurations and is applicable to both unweighted as well as weighted graphs. A comparative analysis with fast simulated annealing is provided which highlights the advantages of our scheme in terms of system size, hardness of the graph, and the number of iterations required to converge to the solution.
This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson point process in the important case where the intensity depends on covariates, based on the observation of a single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow information from far away locations in the observation window, enabling consistent inference in the growing domain asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the well established theory of Bayesian nonparametrics, here combined with concentration inequalities for functionals of stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The local rates are derived with an ad-hoc study that builds on recent advances in the theory of P\'olya tree priors, extended to the present multivariate setting with a novel construction that makes use of the random geometry induced by the covariates.
Deep neural networks (DNNs) often fail silently with over-confident predictions on out-of-distribution (OOD) samples, posing risks in real-world deployments. Existing techniques predominantly emphasize either the feature representation space or the gradient norms computed with respect to DNN parameters, yet they overlook the intricate gradient distribution and the topology of classification regions. To address this gap, we introduce GRadient-aware Out-Of-Distribution detection in interpolated manifolds (GROOD), a novel framework that relies on the discriminative power of gradient space to distinguish between in-distribution (ID) and OOD samples. To build this space, GROOD relies on class prototypes together with a prototype that specifically captures OOD characteristics. Uniquely, our approach incorporates a targeted mix-up operation at an early intermediate layer of the DNN to refine the separation of gradient spaces between ID and OOD samples. We quantify OOD detection efficacy using the distance to the nearest neighbor gradients derived from the training set, yielding a robust OOD score. Experimental evaluations substantiate that the introduction of targeted input mix-upamplifies the separation between ID and OOD in the gradient space, yielding impressive results across diverse datasets. Notably, when benchmarked against ImageNet-1k, GROOD surpasses the established robustness of state-of-the-art baselines. Through this work, we establish the utility of leveraging gradient spaces and class prototypes for enhanced OOD detection for DNN in image classification.
Disability insurance claims are often affected by lengthy reporting delays and adjudication processes. The classic multistate life insurance modeling framework is ill-suited to handle such information delays since the cash flow and available information can no longer be based on the biometric multistate process determining the contractual payments. We propose a new individual reserving model for disability insurance schemes which describes the claim evolution in real-time. Under suitable independence assumptions between the available information and the underlying biometric multistate process, we show that these new reserves may be calculated as natural modifications of the classic reserves. We propose suitable parametric estimators for the model constituents and a real data application shows the practical relevance of our concepts and results.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.