亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

$\newcommand{\eps}{\varepsilon}$We present an auction algorithm using multiplicative instead of constant weight updates to compute a $(1-\eps)$-approximate maximum weight matching (MWM) in a bipartite graph with $n$ vertices and $m$ edges in time $O(m\eps^{-1}\log(\eps^{-1}))$, matching the running time of the linear-time approximation algorithm of Duan and Pettie [JACM '14]. Our algorithm is very simple and it can be extended to give a dynamic data structure that maintains a $(1-\eps)$-approximate maximum weight matching under (1) one-sided vertex deletions (with incident edges) and (2) one-sided vertex insertions (with incident edges sorted by weight) to the other side. The total time time used is $O(m\eps^{-1}\log(\eps^{-1}))$, where $m$ is the sum of the number of initially existing and inserted edges.

相關內容

We present a new approach to approximate nearest-neighbor queries in fixed dimension under a variety of non-Euclidean distances. We are given a set $S$ of $n$ points in $\mathbb{R}^d$, an approximation parameter $\varepsilon > 0$, and a distance function that satisfies certain smoothness and growth-rate assumptions. The objective is to preprocess $S$ into a data structure so that for any query point $q$ in $\mathbb{R}^d$, it is possible to efficiently report any point of $S$ whose distance from $q$ is within a factor of $1+\varepsilon$ of the actual closest point. Prior to this work, the most efficient data structures for approximate nearest-neighbor searching in spaces of constant dimensionality applied only to the Euclidean metric. This paper overcomes this limitation through a method called convexification. For admissible distance functions, the proposed data structures answer queries in logarithmic time using $O(n \log (1 / \varepsilon) / \varepsilon^{d/2})$ space, nearly matching the best known bounds for the Euclidean metric. These results apply to both convex scaling distance functions (including the Mahalanobis distance and weighted Minkowski metrics) and Bregman divergences (including the Kullback-Leibler divergence and the Itakura-Saito distance).

We propose and analyze an approximate message passing (AMP) algorithm for the matrix tensor product model, which is a generalization of the standard spiked matrix models that allows for multiple types of pairwise observations over a collection of latent variables. A key innovation for this algorithm is a method for optimally weighing and combining multiple estimates in each iteration. Building upon an AMP convergence theorem for non-separable functions, we prove a state evolution for non-separable functions that provides an asymptotically exact description of its performance in the high-dimensional limit. We leverage this state evolution result to provide necessary and sufficient conditions for recovery of the signal of interest. Such conditions depend on the singular values of a linear operator derived from an appropriate generalization of a signal-to-noise ratio for our model. Our results recover as special cases a number of recently proposed methods for contextual models (e.g., covariate assisted clustering) as well as inhomogeneous noise models.

Building upon the exact methods presented in our earlier work [J. Complexity, 2022], we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While we prove that the heuristic does not necessarily return an optimal solution, we obtain very promising results for all tested dimensions. For example, for moderate point set sizes $30 \leq n \leq 240$ in dimension 6, we obtain point sets with $L_{\infty}$ star discrepancy up to 35% better than that of the first $n$ points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We also provide a comparison with a recent energy functional introduced by Steinerberger [J. Complexity, 2019], showing that our heuristic performs better on all tested instances.

Consider a random sample $(X_{1},\ldots,X_{n})$ from an unknown discrete distribution $P=\sum_{j\geq1}p_{j}\delta_{s_{j}}$ on a countable alphabet $\mathbb{S}$, and let $(Y_{n,j})_{j\geq1}$ be the empirical frequencies of distinct symbols $s_{j}$'s in the sample. We consider the problem of estimating the $r$-order missing mass, which is a discrete functional of $P$ defined as $$\theta_{r}(P;\mathbf{X}_{n})=\sum_{j\geq1}p^{r}_{j}I(Y_{n,j}=0).$$ This is generalization of the missing mass whose estimation is a classical problem in statistics, being the subject of numerous studies both in theory and methods. First, we introduce a nonparametric estimator of $\theta_{r}(P;\mathbf{X}_{n})$ and a corresponding non-asymptotic confidence interval through concentration properties of $\theta_{r}(P;\mathbf{X}_{n})$. Then, we investigate minimax estimation of $\theta_{r}(P;\mathbf{X}_{n})$, which is the main contribution of our work. We show that minimax estimation is not feasible over the class of all discrete distributions on $\mathbb{S}$, and not even for distributions with regularly varying tails, which only guarantee that our estimator is consistent for $\theta_{r}(P;\mathbf{X}_{n})$. This leads to introduce the stronger assumption of second-order regular variation for the tail behaviour of $P$, which is proved to be sufficient for minimax estimation of $\theta_r(P;\mathbf{X}_{n})$, making the proposed estimator an optimal minimax estimator of $\theta_{r}(P;\mathbf{X}_{n})$. Our interest in the $r$-order missing mass arises from forensic statistics, where the estimation of the $2$-order missing mass appears in connection to the estimation of the likelihood ratio $T(P,\mathbf{X}_{n})=\theta_{1}(P;\mathbf{X}_{n})/\theta_{2}(P;\mathbf{X}_{n})$, known as the "fundamental problem of forensic mathematics". We present theoretical guarantees to nonparametric estimation of $T(P,\mathbf{X}_{n})$.

By the MAXSAT problem, we are given a set $V$ of $m$ variables and a collection $C$ of $n$ clauses over $V$. We will seek a truth assignment to maximize the number of satisfied clauses. This problem is $\textit{NP}$-hard even for its restricted version, the 2-MAXSAT problem by which every clause contains at most 2 literals. In this paper, we discuss an efficient algorithm to solve this problem. Its worst case time complexity is bounded by O($n^2m^3(log_2\;nm)^{log_2\;nm}$). This shows that the 2-MAXSAT problem can be solved in polynomial time.

We provide new algorithms and conditional hardness for the problem of estimating effective resistances in $n$-node $m$-edge undirected, expander graphs. We provide an $\widetilde{O}(m\epsilon^{-1})$-time algorithm that produces with high probability, an $\widetilde{O}(n\epsilon^{-1})$-bit sketch from which the effective resistance between any pair of nodes can be estimated, to $(1 \pm \epsilon)$-multiplicative accuracy, in $\widetilde{O}(1)$-time. Consequently, we obtain an $\widetilde{O}(m\epsilon^{-1})$-time algorithm for estimating the effective resistance of all edges in such graphs, improving (for sparse graphs) on the previous fastest runtimes of $\widetilde{O}(m\epsilon^{-3/2})$ [Chu et. al. 2018] and $\widetilde{O}(n^2\epsilon^{-1})$ [Jambulapati, Sidford, 2018] for general graphs and $\widetilde{O}(m + n\epsilon^{-2})$ for expanders [Li, Sachdeva 2022]. We complement this result by showing a conditional lower bound that a broad set of algorithms for computing such estimates of the effective resistances between all pairs of nodes require $\widetilde{\Omega}(n^2 \epsilon^{-1/2})$-time, improving upon the previous best such lower bound of $\widetilde{\Omega}(n^2 \epsilon^{-1/13})$ [Musco et. al. 2017]. Further, we leverage the tools underlying these results to obtain improved algorithms and conditional hardness for more general problems of sketching the pseudoinverse of positive semidefinite matrices and estimating functions of their eigenvalues.

In this paper, due to the important value in practical applications, we consider the coded distributed matrix multiplication problem of computing $AA^\top$ in a distributed computing system with $N$ worker nodes and a master node, where the input matrices $A$ and $A^\top$ are partitioned into $m$-by-$p$ and $p$-by-$m$ blocks of equal-size sub-matrices respectively. For effective straggler mitigation, we propose a novel computation strategy, named \emph{folded polynomial code}, which is obtained by modifying the entangled polynomial codes. Moreover, we characterize a lower bound on the optimal recovery threshold among all linear computation strategies when the underlying field is the real number field, and our folded polynomial codes can achieve this bound in the case of $m=1$. Compared with all known computation strategies for coded distributed matrix multiplication, our folded polynomial codes outperform them in terms of recovery threshold, download cost, and decoding complexity.

This work concerns developing communication- and computation-efficient methods for large-scale multiple testing over networks, which is of interest to many practical applications. We take an asymptotic approach and propose two methods, proportion-matching and greedy aggregation, tailored to distributed settings. The proportion-matching method achieves the global BH performance yet only requires a one-shot communication of the (estimated) proportion of true null hypotheses as well as the number of p-values at each node. By focusing on the asymptotic optimal power, we go beyond the BH procedure by providing an explicit characterization of the asymptotic optimal solution. This leads to the greedy aggregation method that effectively approximates the optimal rejection regions at each node, while computation efficiency comes from the greedy-type approach naturally. Moreover, for both methods, we provide the rate of convergence for both the FDR and power. Extensive numerical results over a variety of challenging settings are provided to support our theoretical findings.

We consider the online bipartite matching problem on $(k,d)$-bounded graphs, where each online vertex has at most $d$ neighbors, each offline vertex has at least $k$ neighbors, and $k\geq d\geq 2$. The model of $(k,d)$-bounded graphs is proposed by Naor and Wajc (EC 2015 and TEAC 2018) to model the online advertising applications in which offline advertisers are interested in a large number of ad slots, while each online ad slot is interesting to a small number of advertisers. They proposed deterministic and randomized algorithms with a competitive ratio of $1 - (1-1/d)^k$ for the problem, and show that the competitive ratio is optimal for deterministic algorithms. They also raised the open questions of whether strictly better competitive ratios can be achieved using randomized algorithms, for both the adversarial and stochastic arrival models. In this paper we answer both of their open problems affirmatively. For the adversarial arrival model, we propose a randomized algorithm with competitive ratio $1 - (1-1/d)^k + \Omega(d^{-4}\cdot e^{-\frac{k}{d}})$ for all $k\geq d\geq 2$. We also consider the stochastic model and show that even better competitive ratios can be achieved. We show that for all $k\geq d\geq 2$, the competitive ratio is always at least $0.8237$. We further consider the $b$-matching problem when each offline vertex can be matched at most $b$ times, and provide several competitive ratio lower bounds for the adversarial and stochastic model.

Given a graph, the $k$-plex is a vertex set in which each vertex is not adjacent to at most $k-1$ other vertices in the set. The maximum $k$-plex problem, which asks for the largest $k$-plex from a given graph, is an important but computationally challenging problem in applications like graph search and community detection. So far, there is a number of empirical algorithms without sufficient theoretical explanations on the efficiency. We try to bridge this gap by defining a novel parameter of the input instance, $g_k(G)$, the gap between the degeneracy bound and the size of maximum $k$-plex in the given graph, and presenting an exact algorithm parameterized by $g_k(G)$. In other words, we design an algorithm with running time polynomial in the size of input graph and exponential in $g_k(G)$ where $k$ is a constant. Usually, $g_k(G)$ is small and bounded by $O(\log{(|V|)})$ in real-world graphs, indicating that the algorithm runs in polynomial time. We also carry out massive experiments and show that the algorithm is competitive with the state-of-the-art solvers. Additionally, for large $k$ values such as $15$ and $20$, our algorithm has superior performance over existing algorithms.

北京阿比特科技有限公司