Detection of change-points in a sequence of high-dimensional observations is a very challenging problem, and this becomes even more challenging when the sample size (i.e., the sequence length) is small. In this article, we propose some change-point detection methods based on clustering, which can be conveniently used in such high dimension, low sample size situations. First, we consider the single change-point problem. Using k-means clustering based on some suitable dissimilarity measures, we propose some methods for testing the existence of a change-point and estimating its location. High-dimensional behavior of these proposed methods are investigated under appropriate regularity conditions. Next, we extend our methods for detection of multiple change-points. We carry out extensive numerical studies to compare the performance of our proposed methods with some state-of-the-art methods.
It is common practice to use Laplace approximations to compute marginal likelihoods in Bayesian versions of generalised linear models (GLM). Marginal likelihoods combined with model priors are then used in different search algorithms to compute the posterior marginal probabilities of models and individual covariates. This allows performing Bayesian model selection and model averaging. For large sample sizes, even the Laplace approximation becomes computationally challenging because the optimisation routine involved needs to evaluate the likelihood on the full set of data in multiple iterations. As a consequence, the algorithm is not scalable for large datasets. To address this problem, we suggest using a version of a popular batch stochastic gradient descent (BSGD) algorithm for estimating the marginal likelihood of a GLM by subsampling from the data. We further combine the algorithm with Markov chain Monte Carlo (MCMC) based methods for Bayesian model selection and provide some theoretical results on the convergence of the estimates. Finally, we report results from experiments illustrating the performance of the proposed algorithm.
We consider a class of structured fractional minimization problems, in which the numerator part of the objective is the sum of a differentiable convex function and a convex nonsmooth function, while the denominator part is a concave or convex function. This problem is difficult to solve since it is nonconvex. By exploiting the structure of the problem, we propose two Coordinate Descent (CD) methods for solving this problem. One is applied to the original fractional function, the other is based on the associated parametric problem. The proposed methods iteratively solve a one-dimensional subproblem \textit{globally}, and they are guaranteed to converge to coordinate-wise stationary points. In the case of a convex denominator, we prove that the proposed CD methods using sequential nonconvex approximation find stronger stationary points than existing methods. Under suitable conditions, CD methods with an appropriate initialization converge linearly to the optimal point (also the coordinate-wise stationary point). In the case of a concave denominator, we show that the resulting problem is quasi-convex, and any critical point is a global minimum. We prove that the algorithms converge to the global optimal solution with a sublinear convergence rate. We demonstrate the applicability of the proposed methods to some machine learning and signal processing models. Our experiments on real-world data have shown that our method significantly and consistently outperforms existing methods in terms of accuracy.
This paper presents DRE-CUSUM, an unsupervised density-ratio estimation (DRE) based approach to determine statistical changes in time-series data when no knowledge of the pre-and post-change distributions are available. The core idea behind the proposed approach is to split the time-series at an arbitrary point and estimate the ratio of densities of distribution (using a parametric model such as a neural network) before and after the split point. The DRE-CUSUM change detection statistic is then derived from the cumulative sum (CUSUM) of the logarithm of the estimated density ratio. We present a theoretical justification as well as accuracy guarantees which show that the proposed statistic can reliably detect statistical changes, irrespective of the split point. While there have been prior works on using density ratio based methods for change detection, to the best of our knowledge, this is the first unsupervised change detection approach with a theoretical justification and accuracy guarantees. The simplicity of the proposed framework makes it readily applicable in various practical settings (including high-dimensional time-series data); we also discuss generalizations for online change detection. We experimentally show the superiority of DRE-CUSUM using both synthetic and real-world datasets over existing state-of-the-art unsupervised algorithms (such as Bayesian online change detection, its variants as well as several other heuristic methods).
An incremental approach for computation of convex hull for data points in two-dimensions is presented. The algorithm is not output-sensitive and costs a time that is linear in the size of data points at input. Graham's scan is applied only on a subset of the data points, represented at the extremal of the dataset. Points are classified for extremal, in proportion with the modular distance, about an imaginary point interior to the region bounded by convex hull of the dataset assumed for origin or center in polar coordinate. A subset of the data is arrived by terminating at until an event of no change in maximal points is observed per bin, for iteratively and exponentially decreasing intervals.
Detecting objects in aerial images is challenging for at least two reasons: (1) target objects like pedestrians are very small in pixels, making them hardly distinguished from surrounding background; and (2) targets are in general sparsely and non-uniformly distributed, making the detection very inefficient. In this paper, we address both issues inspired by observing that these targets are often clustered. In particular, we propose a Clustered Detection (ClusDet) network that unifies object clustering and detection in an end-to-end framework. The key components in ClusDet include a cluster proposal sub-network (CPNet), a scale estimation sub-network (ScaleNet), and a dedicated detection network (DetecNet). Given an input image, CPNet produces object cluster regions and ScaleNet estimates object scales for these regions. Then, each scale-normalized cluster region is fed into DetecNet for object detection. ClusDet has several advantages over previous solutions: (1) it greatly reduces the number of chips for final object detection and hence achieves high running time efficiency, (2) the cluster-based scale estimation is more accurate than previously used single-object based ones, hence effectively improves the detection for small objects, and (3) the final DetecNet is dedicated for clustered regions and implicitly models the prior context information so as to boost detection accuracy. The proposed method is tested on three popular aerial image datasets including VisDrone, UAVDT and DOTA. In all experiments, ClusDet achieves promising performance in comparison with state-of-the-art detectors. Code will be available in \url{//github.com/fyangneil}.
In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.
In machine learning, novelty detection is the task of identifying novel unseen data. During training, only samples from the normal class are available. Test samples are classified as normal or abnormal by assignment of a novelty score. Here we propose novelty detection methods based on training variational autoencoders (VAEs) on normal data. Since abnormal samples are not used during training, we define novelty metrics based on the (partially complementary) assumptions that the VAE is less capable of reconstructing abnormal samples well; that abnormal samples more strongly violate the VAE regularizer; and that abnormal samples differ from normal samples not only in input-feature space, but also in the VAE latent space and VAE output. These approaches, combined with various possibilities of using (e.g. sampling) the probabilistic VAE to obtain scalar novelty scores, yield a large family of methods. We apply these methods to magnetic resonance imaging, namely to the detection of diffusion-space (q-space) abnormalities in diffusion MRI scans of multiple sclerosis patients, i.e. to detect multiple sclerosis lesions without using any lesion labels for training. Many of our methods outperform previously proposed q-space novelty detection methods. We also evaluate the proposed methods on the MNIST handwritten digits dataset and show that many of them are able to outperform the state of the art.
Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an extensive comparison of measures of clusterability and provide guidelines that clustering users can reference to select suitable measures for their applications.
We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories as in prior works on zero-shot classification. We present a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets - MSCOCO and VisualGenome, and present extensive empirical results in both the traditional and generalized zero-shot settings to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.
In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.