亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the advent of high-speed, high-precision, and low-power mixed-signal systems, there is an ever-growing demand for accurate, fast, and energy-efficient analog-to-digital (ADCs) and digital-to-analog converters (DACs). Unfortunately, with the downscaling of CMOS technology, modern ADCs trade off speed, power and accuracy. Recently, memristive neuromorphic architectures of four-bit ADC/DAC have been proposed. Such converters can be trained in real-time using machine learning algorithms, to break through the speedpower-accuracy trade-off while optimizing the conversion performance for different applications. However, scaling such architectures above four bits is challenging. This paper proposes a scalable and modular neural network ADC architecture based on a pipeline of four-bit converters, preserving their inherent advantages in application reconfiguration, mismatch selfcalibration, noise tolerance, and power optimization, while approaching higher resolution and throughput in penalty of latency. SPICE evaluation shows that an 8-bit pipelined ADC achieves 0.18 LSB INL, 0.20 LSB DNL, 7.6 ENOB, and 0.97 fJ/conv FOM. This work presents a significant step towards the realization of large-scale neuromorphic data converters.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In the rapidly evolving landscape of artificial intelligence, multimodal learning systems (MMLS) have gained traction for their ability to process and integrate information from diverse modality inputs. Their expanding use in vital sectors such as healthcare has made safety assurance a critical concern. However, the absence of systematic research into their safety is a significant barrier to progress in this field. To bridge the gap, we present the first taxonomy that systematically categorizes and assesses MMLS safety. This taxonomy is structured around four fundamental pillars that are critical to ensuring the safety of MMLS: robustness, alignment, monitoring, and controllability. Leveraging this taxonomy, we review existing methodologies, benchmarks, and the current state of research, while also pinpointing the principal limitations and gaps in knowledge. Finally, we discuss unique challenges in MMLS safety. In illuminating these challenges, we aim to pave the way for future research, proposing potential directions that could lead to significant advancements in the safety protocols of MMLS.

Learning an effective policy to control high-dimensional, overactuated systems is a significant challenge for deep reinforcement learning algorithms. Such control scenarios are often observed in the neural control of vertebrate musculoskeletal systems. The study of these control mechanisms will provide insights into the control of high-dimensional, overactuated systems. The coordination of actuators, known as muscle synergies in neuromechanics, is considered a presumptive mechanism that simplifies the generation of motor commands. The dynamical structure of a system is the basis of its function, allowing us to derive a synergistic representation of actuators. Motivated by this theory, we propose the Dynamical Synergistic Representation (DynSyn) algorithm. DynSyn aims to generate synergistic representations from dynamical structures and perform task-specific, state-dependent adaptation to the representations to improve motor control. We demonstrate DynSyn's efficiency across various tasks involving different musculoskeletal models, achieving state-of-the-art sample efficiency and robustness compared to baseline algorithms. DynSyn generates interpretable synergistic representations that capture the essential features of dynamical structures and demonstrates generalizability across diverse motor tasks.

Model predictive control (MPC) has played a more crucial role in various robotic control tasks, but its high computational requirements are concerning, especially for nonlinear dynamical models. This paper presents a $\textbf{la}$tent $\textbf{l}$inear $\textbf{q}$uadratic $\textbf{r}$egulator (LaLQR) that maps the state space into a latent space, on which the dynamical model is linear and the cost function is quadratic, allowing the efficient application of LQR. We jointly learn this alternative system by imitating the original MPC. Experiments show LaLQR's superior efficiency and generalization compared to other baselines.

Evaluating and updating the obstacle avoidance velocity for an autonomous robot in real-time ensures robustness against noise and disturbances. A passive damping controller can obtain the desired motion with a torque-controlled robot, which remains compliant and ensures a safe response to external perturbations. Here, we propose a novel approach for designing the passive control policy. Our algorithm complies with obstacle-free zones while transitioning to increased damping near obstacles to ensure collision avoidance. This approach ensures stability across diverse scenarios, effectively mitigating disturbances. Validation on a 7DoF robot arm demonstrates superior collision rejection capabilities compared to the baseline, underlining its practicality for real-world applications. Our obstacle-aware damping controller represents a substantial advancement in secure robot control within complex and uncertain environments.

Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning. These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.

Deep learning models have shown considerable vulnerability to adversarial attacks, particularly as attacker strategies become more sophisticated. While traditional adversarial training (AT) techniques offer some resilience, they often focus on defending against a single type of attack, e.g., the $\ell_\infty$-norm attack, which can fail for other types. This paper introduces a computationally efficient multilevel $\ell_p$ defense, called the Efficient Robust Mode Connectivity (EMRC) method, which aims to enhance a deep learning model's resilience against multiple $\ell_p$-norm attacks. Similar to analytical continuation approaches used in continuous optimization, the method blends two $p$-specific adversarially optimal models, the $\ell_1$- and $\ell_\infty$-norm AT solutions, to provide good adversarial robustness for a range of $p$. We present experiments demonstrating that our approach performs better on various attacks as compared to AT-$\ell_\infty$, E-AT, and MSD, for datasets/architectures including: CIFAR-10, CIFAR-100 / PreResNet110, WideResNet, ViT-Base.

We use the concept of active antenna available power to derive a generalization of the Friis transmission formula for multiport antenna systems. With beamformer weights chosen such that the array patterns are the same when transmitting and receiving, the active antenna available power at the receiving antenna divided by the input power at the transmitter is symmetric under link direction reversal in the near field as well as the far field. These results generalize the Friis transmission formula to beamformed multiport antenna systems in an arbitrary reciprocal propagation environment.

High-level synthesis (HLS) has significantly advanced the automation of digital circuits design, yet the need for expertise and time in pragma tuning remains challenging. Existing solutions for the design space exploration (DSE) adopt either heuristic methods, lacking essential information for further optimization potential, or predictive models, missing sufficient generalization due to the time-consuming nature of HLS and the exponential growth of the design space. To address these challenges, we propose Deep Inverse Design for HLS (DID4HLS), a novel approach that integrates graph neural networks and generative models. DID4HLS iteratively optimizes hardware designs aimed at compute-intensive algorithms by learning conditional distributions of design features from post-HLS data. Compared to four state-of-the-art DSE baselines, our method achieved an average improvement of 42.5% on average distance to reference set (ADRS) compared to the best-performing baselines across six benchmarks, while demonstrating high robustness and efficiency.

Over the last decade, the use of autonomous drone systems for surveying, search and rescue, or last-mile delivery has increased exponentially. With the rise of these applications comes the need for highly robust, safety-critical algorithms which can operate drones in complex and uncertain environments. Additionally, flying fast enables drones to cover more ground which in turn increases productivity and further strengthens their use case. One proxy for developing algorithms used in high-speed navigation is the task of autonomous drone racing, where researchers program drones to fly through a sequence of gates and avoid obstacles as quickly as possible using onboard sensors and limited computational power. Speeds and accelerations exceed over 80 kph and 4 g respectively, raising significant challenges across perception, planning, control, and state estimation. To achieve maximum performance, systems require real-time algorithms that are robust to motion blur, high dynamic range, model uncertainties, aerodynamic disturbances, and often unpredictable opponents. This survey covers the progression of autonomous drone racing across model-based and learning-based approaches. We provide an overview of the field, its evolution over the years, and conclude with the biggest challenges and open questions to be faced in the future.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

北京阿比特科技有限公司