亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An $f$-edge fault-tolerant distance sensitive oracle ($f$-DSO) with stretch $\sigma \ge 1$ is a data structure that preprocesses a given undirected, unweighted graph $G$ with $n$ vertices and $m$ edges, and a positive integer $f$. When queried with a pair of vertices $s, t$ and a set $F$ of at most $f$ edges, it returns a $\sigma$-approximation of the $s$-$t$-distance in $G-F$. We study $f$-DSOs that take subquadratic space. Thorup and Zwick [JACM 2005] showed that this is only possible for $\sigma \ge 3$. We present, for any constant $f \ge 1$ and $\alpha \in (0, \frac{1}{2})$, and any $\varepsilon > 0$, a randomized $f$-DSO with stretch $ 3 + \varepsilon$ that w.h.p. takes $\widetilde{O}(n^{2-\frac{\alpha}{f+1}}) \cdot O(\log n/\varepsilon)^{f+2}$ space and has an $O(n^\alpha/\varepsilon^2)$ query time. The time to build the oracle is $\widetilde{O}(mn^{2-\frac{\alpha}{f+1}}) \cdot O(\log n/\varepsilon)^{f+1}$. We also give an improved construction for graphs with diameter at most $D$. For any positive integer $k$, we devise an $f$-DSO with stretch $2k-1$ that w.h.p. takes $O(D^{f+o(1)} n^{1+1/k})$ space and has $\widetilde{O}(D^{o(1)})$ query time, with a preprocessing time of $O(D^{f+o(1)} mn^{1/k})$. Chechik, Cohen, Fiat, and Kaplan [SODA 2017] devised an $f$-DSO with stretch $1{+}\varepsilon$ and preprocessing time $O(n^{5+o(1)}/\varepsilon^f)$, albeit with a super-quadratic space requirement. We show how to reduce their preprocessing time to $O(mn^{2+o(1)}/\varepsilon^f)$.

相關內容

甲(jia)骨(gu)文(wen)公(gong)司,全(quan)稱甲(jia)骨(gu)文(wen)股份有限公(gong)司(甲(jia)骨(gu)文(wen)軟(ruan)件(jian)系統有限公(gong)司),是(shi)全(quan)球(qiu)(qiu)最大(da)的企(qi)業級(ji)軟(ruan)件(jian)公(gong)司,總部位于(yu)美國加利福尼亞州的紅木灘。1989年正式(shi)進(jin)入(ru)中國市場(chang)。2013年,甲(jia)骨(gu)文(wen)已超越 IBM ,成為繼 Microsoft 后全(quan)球(qiu)(qiu)第二大(da)軟(ruan)件(jian)公(gong)司。

The inference of a large symmetric signal-matrix $\mathbf{S} \in \mathbb{R}^{N\times N}$ corrupted by additive Gaussian noise, is considered for two regimes of growth of the rank $M$ as a function of $N$. For sub-linear ranks $M=\Theta(N^\alpha)$ with $\alpha\in(0,1)$ the mutual information and minimum mean-square error (MMSE) are derived for two classes of signal-matrices: (a) $\mathbf{S}=\mathbf{X}\mathbf{X}^\intercal$ with entries of $\mathbf{X}\in\mathbb{R}^{N\times M}$ independent identically distributed; (b) $\mathbf{S}$ sampled from a rotationally invariant distribution. Surprisingly, the formulas match the rank-one case. Two efficient algorithms are explored and conjectured to saturate the MMSE when no statistical-to-computational gap is present: (1) Decimation Approximate Message Passing; (2) a spectral algorithm based on a Rotation Invariant Estimator. For linear ranks $M=\Theta(N)$ the mutual information is rigorously derived for signal-matrices from a rotationally invariant distribution. Close connections with scalar inference in free probability are uncovered, which allow to deduce a simple formula for the MMSE as an integral involving the limiting spectral measure of the data matrix only. An interesting issue is whether the known information theoretic phase transitions for rank-one, and hence also sub-linear-rank, still persist in linear-rank. Our analysis suggests that only a smoothed-out trace of the transitions persists. Furthermore, the change of behavior between low and truly high-rank regimes only happens at the linear scale $\alpha=1$.

We say a finite word $x$ is a palindromic periodicity if there exist two palindromes $p$ and $s$ such that $|x| \geq |ps|$ and $x$ is a prefix of the word $(ps)^\omega = pspsps\cdots$. In this paper we examine the palindromic periodicities occurring in some classical infinite words, such as Sturmian words, episturmian words, the Thue-Morse word, the period-doubling word, the Rudin-Shapiro word, the paperfolding word, and the Tribonacci word, and prove a number of results about them.

Data markets serve as crucial platforms facilitating data discovery, exchange, sharing, and integration among data users and providers. However, the paramount concern of privacy has predominantly centered on protecting privacy of data owners and third parties, neglecting the challenges associated with protecting the privacy of data buyers. In this article, we address this gap by modeling the intricacies of data buyer privacy protection and investigating the delicate balance between privacy and purchase cost. Through comprehensive experimentation, our results yield valuable insights, shedding light on the efficacy and efficiency of our proposed approaches.

We prove optimal concentration of measure for lifted functions on high dimensional expanders (HDX). Let $X$ be a $k$-dimensional HDX. We show for any $i\leq k$ and $f:X(i)\to [0,1]$: \[\Pr_{s\in X(k)}\left[\left|\underset{{t\subseteq s}}{\mathbb{E}}[f(t)]-\mu\right|\geq\varepsilon\right]\leq exp\left(-\varepsilon^2\frac{k}{i}\right).\] Using this fact, we prove that high dimensional expanders are reverse hypercontractive, a powerful functional inequality from discrete analysis implying that for any sets $A,B \subset X(k)$, the probability a $\rho$-correlated pair passes between them is at least \[\Pr_{s,s' \sim T_\rho}[s \in A, s' \in B] \geq \Pr[A]^{O(1)} \Pr[B]^{O(1)}.\] Our results hold under weak spectral assumptions on $X$. Namely we prove exponential concentration of measure for any complex below the `Trickling-Down Threshold' (beyond which concentration may be arbitrarily poor), and optimal concentration for $\sqrt{k}$-skeletons of such complexes. We also show optimal bounds for the top dimension of stronger HDX among other settings. We leverage our inequalities to prove several new agreement testing theorems on high dimensional expanders, including a new 99%-regime test for subsets, and a variant of the `Z-test' achieving inverse exponential soundness under the stronger assumption of $\ell_\infty$-expansion. The latter gives rise to the first optimal testers beyond the complete complex and products, a stepping stone toward the use of HDX in strong soundness PCPs. We also give applications within expansion, analysis, combinatorics, and coding theory, including a proof that two-sided HDX have optimal geometric overlap (giving the first explicit bounded-degree construction), near-optimal double samplers, new super-exponential degree lower bounds for certain HDX, distance-amplified list-decodable and locally testable codes, a Frankl-R\"odl Theorem and more.

We propose a generalization of Zhandry's compressed oracle method to random permutations, where an algorithm can query both the permutation and its inverse. We show how to use the resulting oracle simulation to bound the success probability of an algorithm for any predicate on input-output pairs, a key feature of Zhandry's technique that had hitherto resisted attempts at generalization to random permutations. One key technical ingredient is to use strictly monotone factorizations to represent the permutation in the oracle's database. As an application of our framework, we show that the one-round sponge construction is unconditionally preimage resistant in the random permutation model. This proves a conjecture by Unruh.

Flow sparsification is a classic graph compression technique which, given a capacitated graph $G$ on $k$ terminals, aims to construct another capacitated graph $H$, called a \emph{flow sparsifier}, that preserves, either exactly or approximately, every \emph{multicommodity flow} between terminals (ideally, with size as a small function of $k$). Cut sparsifiers are a restricted variant of flow sparsifiers which are only required to preserve maximum flows between bipartitions of the terminal set. It is known that exact cut sparsifiers require $2^{\Omega(k)}$ many vertices [Krauthgamer and Rika, SODA 2013], with the hard instances being \emph{quasi-bipartite} graphs, {where there are no edges between non-terminals}. On the other hand, it has been shown recently that exact (or even $(1+\varepsilon)$-approximate) flow sparsifiers on networks with just 6 terminals require unbounded size [Krauthgamer and Mosenzon, SODA 2023, Chen and Tan, SODA 2024]. In this paper, we construct exact flow sparsifiers of size $3^{k^{3}}$ and exact cut sparsifiers of size $2^{k^2}$ for quasi-bipartite graphs. In particular, the flow sparsifiers are contraction-based, that is, they are obtained from the input graph by (vertex) contraction operations. Our main contribution is a new technique to construct sparsifiers that exploits connections to polyhedral geometry, and that can be generalized to graphs with a small separator that separates the graph into small components. We also give an improved reduction theorem for graphs of bounded treewidth~[Andoni et al., SODA 2011], implying a flow sparsifier of size $O(k\cdot w)$ and quality $O\bigl(\frac{\log w}{\log \log w}\bigr)$, where $w$ is the treewidth.

Big data, encompassing extensive datasets, has seen rapid expansion, notably with a considerable portion being textual data, including strings and texts. Simple compression methods and standard data structures prove inadequate for processing these datasets, as they require decompression for usage or consume extensive memory resources. Consequently, this motivation has led to the development of compressed data structures that support various queries for a given string, typically operating in polylogarithmic time and utilizing compressed space proportional to the string's length. Notably, the suffix array (SA) query is a critical component in implementing a suffix tree, which has a broad spectrum of applications. A line of research has been conducted on (especially, static) compressed data structures that support the SA query. A common finding from most of the studies is the suboptimal space efficiency of existing compressed data structures. Kociumaka, Navarro, and Prezza [IEEE Trans. Inf. Theory 2023] have made a significant contribution by introducing an asymptotically minimal space requirement, $O\left(\delta \log\frac{n\log\sigma}{\delta\log n} \log n \right)$ bits ($\delta$-optimal space), sufficient to represent any string of length $n$, with an alphabet size of $\sigma$, and substring complexity $\delta$, serving as a measure of repetitiveness. More recently, Kempa and Kociumaka [FOCS 2023] presented $\delta$-SA, a compressed data structure supporting SA queries in $\delta$-optimal space. However, the data structures introduced thus far are static. We present the first dynamic compressed data structure that supports the SA query and update in polylogarithmic time and $\delta$-optimal space. More precisely, it can answer SA queries and perform updates in $O(\log^7 n)$ and expected $O(\log^8 n)$ time, respectively, using an expected $\delta$-optimal space.

We study a general factor analysis framework where the $n$-by-$p$ data matrix is assumed to follow a general exponential family distribution entry-wise. While this model framework has been proposed before, we here further relax its distributional assumption by using a quasi-likelihood setup. By parameterizing the mean-variance relationship on data entries, we additionally introduce a dispersion parameter and entry-wise weights to model large variations and missing values. The resulting model is thus not only robust to distribution misspecification but also more flexible and able to capture non-Gaussian covariance structures of the data matrix. Our main focus is on efficient computational approaches to perform the factor analysis. Previous modeling frameworks rely on simulated maximum likelihood (SML) to find the factorization solution, but this method was shown to lead to asymptotic bias when the simulated sample size grows slower than the square root of the sample size $n$, eliminating its practical application for data matrices with large $n$. Borrowing from expectation-maximization (EM) and stochastic gradient descent (SGD), we investigate three estimation procedures based on iterative factorization updates. Our proposed solution does not show asymptotic biases, and scales even better for large matrix factorizations with error $O(1/p)$. To support our findings, we conduct simulation experiments and discuss its application in three case studies.

We study a core algorithmic problem in network design called $\mathcal{F}$-augmentation that involves increasing the connectivity of a given family of cuts $\mathcal{F}$. Over 30 years ago, Williamson et al. (STOC `93) provided a 2-approximation primal-dual algorithm when $\mathcal{F}$ is a so-called uncrossable family but extending their results to families that are non-uncrossable has remained a challenging question. In this paper, we introduce the concept of the crossing density of a set family and show how this opens up a completely new approach to analyzing primal-dual algorithms. We study pliable families, a strict generalization of uncrossable families introduced by Bansal et al. (ICALP `23), and provide the first approximation algorithm for $\mathcal{F}$-augmentation of such families based on the crossing density. We also improve on the results in Bansal et al. (ICALP `23) by providing a 5-approximation algorithm for the $\mathcal{F}$-augmentation problem when $\mathcal{F}$ is a family of near min-cuts using the concept of crossing densities. This immediately improves approximation factors for the Capacitated Network Design Problem. Finally, we study the $(p,3)$-flexible graph connectivity problem. By carefully analyzing the structure of feasible solutions and using the techniques developed in this paper, we provide the first constant factor approximation algorithm for this problem exhibiting a 12-approximation algorithm.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

北京阿比特科技有限公司