In this paper we propose a novel second-order accurate well balanced scheme for shallow water equations in general covariant coordinates over manifolds. In our approach, once the gravitational field is defined for the specific case, one equipotential surface is detected and parametrized by a frame of general covariant coordinates. This surface is the manifold whose covariant parametrization induces a metric tensor. The model is then re-written in a hyperbolic form with a tuple of conserved variables composed both of the evolving physical quantities and the metric coefficients. This formulation allows the numerical scheme to automatically compute the curvature of the manifold as long as the physical variables are evolved.
We consider the setting of online convex optimization (OCO) with \textit{exp-concave} losses. The best regret bound known for this setting is $O(n\log{}T)$, where $n$ is the dimension and $T$ is the number of prediction rounds (treating all other quantities as constants and assuming $T$ is sufficiently large), and is attainable via the well-known Online Newton Step algorithm (ONS). However, ONS requires on each iteration to compute a projection (according to some matrix-induced norm) onto the feasible convex set, which is often computationally prohibitive in high-dimensional settings and when the feasible set admits a non-trivial structure. In this work we consider projection-free online algorithms for exp-concave and smooth losses, where by projection-free we refer to algorithms that rely only on the availability of a linear optimization oracle (LOO) for the feasible set, which in many applications of interest admits much more efficient implementations than a projection oracle. We present an LOO-based ONS-style algorithm, which using overall $O(T)$ calls to a LOO, guarantees in worst case regret bounded by $\widetilde{O}(n^{2/3}T^{2/3})$ (ignoring all quantities except for $n,T$). However, our algorithm is most interesting in an important and plausible low-dimensional data scenario: if the gradients (approximately) span a subspace of dimension at most $\rho$, $\rho << n$, the regret bound improves to $\widetilde{O}(\rho^{2/3}T^{2/3})$, and by applying standard deterministic sketching techniques, both the space and average additional per-iteration runtime requirements are only $O(\rho{}n)$ (instead of $O(n^2)$). This improves upon recently proposed LOO-based algorithms for OCO which, while having the same state-of-the-art dependence on the horizon $T$, suffer from regret/oracle complexity that scales with $\sqrt{n}$ or worse.
Partial synchrony is a model of computation in many distributed algorithms and modern blockchains. These algorithms are typically parameterized in the number of participants, and their correctness requires the existence of bounds on message delays and on the relative speed of processes after reaching Global Stabilization Time. These characteristics make partially synchronous algorithms parameterized in the number of processes, and parametric in time bounds, which render automated verification of partially synchronous algorithms challenging. In this paper, we present a case study on formal verification of both safety and liveness of the Chandra and Toueg failure detector that is based on partial synchrony. To this end, we first introduce and formalize the class of symmetric point-to-point algorithms that contains the failure detector. Second, we show that these symmetric point-to-point algorithms have a cutoff, and the cutoff results hold in three models of computation: synchrony, asynchrony, and partial synchrony. As a result, one can verify them by model checking small instances, but the verification problem stays parametric in time. Next, we specify the failure detector and the partial synchrony assumptions in three frameworks: TLA+, IVy, and counter automata. Importantly, we tune our modeling to use the strength of each method: (1) We are using counters to encode message buffers with counter automata, (2) we are using first-order relations to encode message buffers in IVy, and (3) we are using both approaches in TLA+. By running the tools for TLA+ and counter automata, we demonstrate safety for fixed time bounds. By running IVy, we prove safety for arbitrary time bounds. Moreover, we show how to verify liveness of the failure detector by reducing the verification problem to safety verification. Thus, both properties are verified by developing inductive invariants with IVy.
The identification of choice models is crucial for understanding consumer behavior and informing marketing or operational strategies, policy design, and product development. The identification of parametric choice-based demand models is typically straightforward. However, nonparametric models, which are highly effective and flexible in explaining customer choice, may encounter the challenge of the dimensionality curse, hindering their identification. A prominent example of a nonparametric model is the ranking-based model, which mirrors the random utility maximization (RUM) class and is known to be nonidentifiable from the collection of choice probabilities alone. Our objective in this paper is to develop a new class of nonparametric models that is not subject to the problem of nonidentifiability. Our model assumes bounded rationality of consumers, which results in symmetric demand cannibalization and intriguingly enables full identification. Additionally, our choice model demonstrates competitive prediction accuracy compared to the state-of-the-art benchmarks in a real-world case study, despite incorporating the assumption of bounded rationality which could, in theory, limit the representation power of our model. In addition, we tackle the important problem of finding the optimal assortment under the proposed choice model. We demonstrate the NP-hardness of this problem and provide a fully polynomial-time approximation scheme through dynamic programming. Additionally, we propose an efficient estimation framework using a combination of column generation and expectation-maximization algorithms, which proves to be more tractable than the estimation algorithm of the aforementioned ranking-based model.
Full Waveform Inversion (FWI) is a large-scale nonlinear ill-posed problem for which implementation of the Newton-type methods is computationally expensive. Moreover, these methods can trap in undesirable local minima when the starting model lacks low-wavenumber part and the recorded data lack low-frequency content. In this paper, the Gauss-Newton (GN) method is modified to address these issues. We rewrite the GN system for multisoure multireceiver FWI in an equivalent matrix equation form whose solution is a diagonal matrix, instead of a vector in the standard system. Then we relax the diagonality constraint, lifting the search direction from a vector to a matrix. This relaxation is equivalent to introducing an extra degree of freedom in the subsurface offset axis for the search direction. Furthermore, it makes the Hessian matrix separable and easy to invert. The relaxed system is solved explicitly for computing the desired search direction, requiring only inversion of two small matrices that deblur the data residual matrix along the source and receiver dimensions. Application of the Extended GN (EGN) method to solve the extended-source FWI leads to an algorithm that has the advantages of both model extension and source extension. Numerical examples are presented showing robustness and stability of EGN algorithm for waveform inversion.
When a vehicle drives on the road, its behaviors will be affected by surrounding vehicles. Prediction and decision should not be considered as two separate stages because all vehicles make decisions interactively. This paper constructs the multi-vehicle driving scenario as a non-zero-sum game and proposes a novel game control framework, which consider prediction, decision and control as a whole. The mutual influence of interactions between vehicles is considered in this framework because decisions are made by Nash equilibrium strategy. To efficiently obtain the strategy, ADP, a model-based reinforcement learning method, is used to solve coupled Hamilton-Jacobi-Bellman equations. Driving performance is evaluated by tracking, efficiency, safety and comfort indices. Experiments show that our algorithm could drive perfectly by directly controlling acceleration and steering angle. Vehicles could learn interactive behaviors such as overtaking and pass. In summary, we propose a non-zero-sum game framework for modeling multi-vehicle driving, provide an effective way to solve the Nash equilibrium driving strategy, and validate at non-signalized intersections.
Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills which aim to reach diverse goals. In particular, offline GCRL only requires purely pre-collected datasets to perform training tasks without additional interactions with the environment. Although offline GCRL has become increasingly prevalent and many previous works have demonstrated its empirical success, the theoretical understanding of efficient offline GCRL algorithms is not well established, especially when the state space is huge and the offline dataset only covers the policy we aim to learn. In this paper, we propose a novel provably efficient algorithm (the sample complexity is $\tilde{O}({\rm poly}(1/\epsilon))$ where $\epsilon$ is the desired suboptimality of the learned policy) with general function approximation. Our algorithm only requires nearly minimal assumptions of the dataset (single-policy concentrability) and the function class (realizability). Moreover, our algorithm consists of two uninterleaved optimization steps, which we refer to as $V$-learning and policy learning, and is computationally stable since it does not involve minimax optimization. To the best of our knowledge, this is the first algorithm with general function approximation and single-policy concentrability that is both statistically efficient and computationally stable.
We propose a new approach to portfolio optimization that utilizes a unique combination of synthetic data generation and a CVaR-constraint. We formulate the portfolio optimization problem as an asset allocation problem in which each asset class is accessed through a passive (index) fund. The asset-class weights are determined by solving an optimization problem which includes a CVaR-constraint. The optimization is carried out by means of a Modified CTGAN algorithm which incorporates features (contextual information) and is used to generate synthetic return scenarios, which, in turn, are fed into the optimization engine. For contextual information we rely on several points along the U.S. Treasury yield curve. The merits of this approach are demonstrated with an example based on ten asset classes (covering stocks, bonds, and commodities) over a fourteen-and-half year period (January 2008-June 2022). We also show that the synthetic generation process is able to capture well the key characteristics of the original data, and the optimization scheme results in portfolios that exhibit satisfactory out-of-sample performance. We also show that this approach outperforms the conventional equal-weights (1/N) asset allocation strategy and other optimization formulations based on historical data only.
We consider the standard broadcast setup with a single server broadcasting information to a number of clients, each of which contains local storage (called cache) of some size, which can store some parts of the available files at the server. The centralized coded caching framework, consists of a caching phase and a delivery phase, both of which are carefully designed in order to use the cache and the channel together optimally. In prior literature, various combinatorial structures have been used to construct coded caching schemes. One of the chief drawbacks of many of these existing constructions is the large subpacketization level, which denotes the number of times a file should be split for the schemes to provide coding gain. In this work, using a new binary matrix model, we present several novel constructions for coded caching based on the various types of combinatorial designs and their $q$-analogs, which are also called subspace designs. While most of the schemes constructed in this work (based on existing designs) have a high cache requirement, they provide a rate that is either constant or decreasing, and moreover require competitively small levels of subpacketization, which is an extremely important feature in practical applications of coded caching. We also apply our constructions to the distributed computing framework of MapReduce, which consists of three phases, the Map phase, the Shuffle phase and the Reduce phase. Using our binary matrix framework, we present a new simple generic coded data shuffling scheme. Employing our designs-based constructions in conjunction with this new shuffling scheme, we obtain new coded computing schemes which have low file complexity, with marginally higher communication load compared to the optimal scheme for equivalent parameters. We show that our schemes can neatly extend to the scenario with full and partial stragglers also.
In this article we propose a new deep learning approach to solve parametric partial differential equations (PDEs) approximately. In particular, we introduce a new strategy to design specific artificial neural network (ANN) architectures in conjunction with specific ANN initialization schemes which are tailor-made for the particular scientific computing approximation problem under consideration. In the proposed approach we combine efficient classical numerical approximation techniques such as higher-order Runge-Kutta schemes with sophisticated deep (operator) learning methodologies such as the recently introduced Fourier neural operators (FNOs). Specifically, we introduce customized adaptions of existing standard ANN architectures together with specialized initializations for these ANN architectures so that at initialization we have that the ANNs closely mimic a chosen efficient classical numerical algorithm for the considered approximation problem. The obtained ANN architectures and their initialization schemes are thus strongly inspired by numerical algorithms as well as by popular deep learning methodologies from the literature and in that sense we refer to the introduced ANNs in conjunction with their tailor-made initialization schemes as Algorithmically Designed Artificial Neural Networks (ADANNs). We numerically test the proposed ADANN approach in the case of some parametric PDEs. In the tested numerical examples the ADANN approach significantly outperforms existing traditional approximation algorithms as well as existing deep learning methodologies from the literature.
Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification through their ability generate embeddings for each class based on their (natural language) names. Prior work has focused on improving the accuracy of these models through prompt engineering or by incorporating a small amount of labeled downstream data (via finetuning). However, there has been little focus on improving the richness of the class names themselves, which can pose issues when class labels are coarsely-defined and uninformative. We propose Classification with Hierarchical Label Sets (or CHiLS), an alternative strategy for zero-shot classification specifically designed for datasets with implicit semantic hierarchies. CHiLS proceeds in three steps: (i) for each class, produce a set of subclasses, using either existing label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP procedure as though these subclasses were the labels of interest; (iii) map the predicted subclass back to its parent to produce the final prediction. Across numerous datasets with underlying hierarchical structure, CHiLS leads to improved accuracy in situations both with and without ground-truth hierarchical information. CHiLS is simple to implement within existing CLIP pipelines and requires no additional training cost. Code is available at: //github.com/acmi-lab/CHILS.