The field of explainable artificial intelligence emerged in response to the growing need for more transparent and reliable models. However, using raw features to provide explanations has been disputed in several works lately, advocating for more user-understandable explanations. To address this issue, a wide range of papers proposing Concept-based eXplainable Artificial Intelligence (C-XAI) methods have arisen in recent years. Nevertheless, a unified categorization and precise field definition are still missing. This paper fills the gap by offering a thorough review of C-XAI approaches. We define and identify different concepts and explanation types. We provide a taxonomy identifying nine categories and propose guidelines for selecting a suitable category based on the development context. Additionally, we report common evaluation strategies including metrics, human evaluations and dataset employed, aiming to assist the development of future methods. We believe this survey will serve researchers, practitioners, and domain experts in comprehending and advancing this innovative field.
The analysis of scientific data and complex multivariate systems requires information quantities that capture relationships among multiple random variables. Recently, new information-theoretic measures have been developed to overcome the shortcomings of classical ones, such as mutual information, that are restricted to considering pairwise interactions. Among them, the concept of information synergy and redundancy is crucial for understanding the high-order dependencies between variables. One of the most prominent and versatile measures based on this concept is O-information, which provides a clear and scalable way to quantify the synergy-redundancy balance in multivariate systems. However, its practical application is limited to simplified cases. In this work, we introduce S$\Omega$I, which allows for the first time to compute O-information without restrictive assumptions about the system. Our experiments validate our approach on synthetic data, and demonstrate the effectiveness of S$\Omega$I in the context of a real-world use case.
Robotic systems are typically composed of various subsystems, such as localization and navigation, each encompassing numerous configurable components (e.g., selecting different planning algorithms). Once an algorithm has been selected for a component, its associated configuration options must be set to the appropriate values. Configuration options across the system stack interact non-trivially. Finding optimal configurations for highly configurable robots to achieve desired performance poses a significant challenge due to the interactions between configuration options across software and hardware that result in an exponentially large and complex configuration space. These challenges are further compounded by the need for transferability between different environments and robotic platforms. Data efficient optimization algorithms (e.g., Bayesian optimization) have been increasingly employed to automate the tuning of configurable parameters in cyber-physical systems. However, such optimization algorithms converge at later stages, often after exhausting the allocated budget (e.g., optimization steps, allotted time) and lacking transferability. This paper proposes CURE -- a method that identifies causally relevant configuration options, enabling the optimization process to operate in a reduced search space, thereby enabling faster optimization of robot performance. CURE abstracts the causal relationships between various configuration options and robot performance objectives by learning a causal model in the source (a low-cost environment such as the Gazebo simulator) and applying the learned knowledge to perform optimization in the target (e.g., Turtlebot 3 physical robot). We demonstrate the effectiveness and transferability of CURE by conducting experiments that involve varying degrees of deployment changes in both physical robots and simulation.
The recognition and understanding of traffic incidents, particularly traffic accidents, is a topic of paramount importance in the realm of intelligent transportation systems and intelligent vehicles. This area has continually captured the extensive focus of both the academic and industrial sectors. Identifying and comprehending complex traffic events is highly challenging, primarily due to the intricate nature of traffic environments, diverse observational perspectives, and the multifaceted causes of accidents. These factors have persistently impeded the development of effective solutions. The advent of large vision-language models (VLMs) such as GPT-4V, has introduced innovative approaches to addressing this issue. In this paper, we explore the ability of GPT-4V with a set of representative traffic incident videos and delve into the model's capacity of understanding these complex traffic situations. We observe that GPT-4V demonstrates remarkable cognitive, reasoning, and decision-making ability in certain classic traffic events. Concurrently, we also identify certain limitations of GPT-4V, which constrain its understanding in more intricate scenarios. These limitations merit further exploration and resolution.
The reconfigurable intelligent surface (RIS) has received a lot of interest because of its capacity to reconfigure the wireless communication environment in a cost- and energy-efficient way. However, the realistic power consumption modeling and measurement validation of RIS has received far too little attention. Therefore, in this work, we model the power consumption of RIS and conduct measurement validations using various RISs to fill this vacancy. Firstly, we propose a practical power consumption model of RIS. The RIS hardware is divided into three basic parts: the FPGA control board, the drive circuits, and the RIS unit cells. The power consumption of the first two parts is modeled as $P_{\text {static}}$ and that of the last part is modeled as $P_{\text {units}}$. Expressions of $P_{\text {static}}$ and $P_{\text {units}}$ vary amongst different types of RISs. Secondly, we conduct measurements on various RISs to validate the proposed model. Five different RISs including the PIN diode, varactor diode, and RF switch types are measured, and measurement results validate the generality and applicability of the proposed power consumption model of RIS. Finally, we summarize the measurement results and discuss the approaches to achieve the low-power-consumption design of RIS-assisted wireless communication systems.
Graph generation has been dominated by autoregressive models due to their simplicity and effectiveness, despite their sensitivity to ordering. Yet diffusion models have garnered increasing attention, as they offer comparable performance while being permutation-invariant. Current graph diffusion models generate graphs in a one-shot fashion, but they require extra features and thousands of denoising steps to achieve optimal performance. We introduce PARD, a Permutation-invariant Auto Regressive Diffusion model that integrates diffusion models with autoregressive methods. PARD harnesses the effectiveness and efficiency of the autoregressive model while maintaining permutation invariance without ordering sensitivity. Specifically, we show that contrary to sets, elements in a graph are not entirely unordered and there is a unique partial order for nodes and edges. With this partial order, PARD generates a graph in a block-by-block, autoregressive fashion, where each block's probability is conditionally modeled by a shared diffusion model with an equivariant network. To ensure efficiency while being expressive, we further propose a higher-order graph transformer, which integrates transformer with PPGN. Like GPT, we extend the higher-order graph transformer to support parallel training of all blocks. Without any extra features, PARD achieves state-of-the-art performance on molecular and non-molecular datasets, and scales to large datasets like MOSES containing 1.9M molecules.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.