Recent developments in counter-adversarial system research have led to the development of inverse stochastic filters that are employed by a defender to infer the information its adversary may have learned. Prior works addressed this inverse cognition problem by proposing inverse Kalman filter (I-KF) and inverse extended KF (I-EKF), respectively, for linear and non-linear Gaussian state-space models. However, in practice, many counter-adversarial settings involve highly non-linear system models, wherein EKF's linearization often fails. In this paper, we consider the efficient numerical integration techniques to address such nonlinearities and, to this end, develop inverse cubature KF (I-CKF) and inverse quadrature KF (I-QKF). We derive the stochastic stability conditions for the proposed filters in the exponential-mean-squared-boundedness sense. Numerical experiments demonstrate the estimation accuracy of our I-CKF and I-QKF with the recursive Cram\'{e}r-Rao lower bound as a benchmark.
A code of length $n$ is said to be (combinatorially) $(\rho,L)$-list decodable if the Hamming ball of radius $\rho n$ around any vector in the ambient space does not contain more than $L$ codewords. We study a recently introduced class of higher order MDS codes, which are closely related (via duality) to codes that achieve a generalized Singleton bound for list decodability. For some $\ell\geq 1$, higher order MDS codes of length $n$, dimension $k$, and order $\ell$ are denoted as $(n,k)$-MDS($\ell$) codes. We present a number of results on the structure of these codes, identifying the `extend-ability' of their parameters in various scenarios. Specifically, for some parameter regimes, we identify conditions under which $(n_1,k_1)$-MDS($\ell_1$) codes can be obtained from $(n_2,k_2)$-MDS($\ell_2$) codes, via various techniques. We believe that these results will aid in efficient constructions of higher order MDS codes. We also obtain a new field size upper bound for the existence of such codes, which arguably improves over the best known existing bound, in some parameter regimes.
Particle Marginal Metropolis-Hastings (PMMH) is a general approach to Bayesian inference when the likelihood is intractable, but can be estimated unbiasedly. Our article develops an efficient PMMH method that scales up better to higher dimensional state vectors than previous approaches. The improvement is achieved by the following innovations. First, the trimmed mean of the unbiased likelihood estimates of the multiple particle filters is used. Second, a novel block version of PMMH that works with multiple particle filters is proposed. Third, the article develops an efficient auxiliary disturbance particle filter, which is necessary when the bootstrap disturbance filter is inefficient, but the state transition density cannot be expressed in closed form. Fourth, a novel sorting algorithm, which is as effective as previous approaches but significantly faster than them, is developed to preserve the correlation between the logs of the likelihood estimates at the current and proposed parameter values. The performance of the sampler is investigated empirically by applying it to non-linear Dynamic Stochastic General Equilibrium models with relatively high state dimensions and with intractable state transition densities and to multivariate stochastic volatility in the mean models. Although our focus is on applying the method to state space models, the approach will be useful in a wide range of applications such as large panel data models and stochastic differential equation models with mixed effects.
A joint mix is a random vector with a constant component-wise sum. The dependence structure of a joint mix minimizes some common objectives such as the variance of the component-wise sum, and it is regarded as a concept of extremal negative dependence. In this paper, we explore the connection between the joint mix structure and popular notions of negative dependence in statistics, such as negative correlation dependence, negative orthant dependence and negative association. A joint mix is not always negatively dependent in any of the above senses, but some natural classes of joint mixes are. We derive various necessary and sufficient conditions for a joint mix to be negatively dependent, and study the compatibility of these notions. For identical marginal distributions, we show that a negatively dependent joint mix solves a multi-marginal optimal transport problem for quadratic cost under a novel setting of uncertainty. Analysis of this optimal transport problem with heterogeneous marginals reveals a trade-off between negative dependence and the joint mix structure.
The massive deployment of low-end wireless Internet of things (IoT) devices opens the challenge of finding de-centralized and lightweight alternatives for secret key distribution. A possible solution, coming from the physical layer, is the secret key generation (SKG) from channel state information (CSI) during the channel's coherence time. This work acknowledges the fact that the CSI consists of deterministic (predictable) and stochastic (unpredictable) components, loosely captured through the terms large-scale and small-scale fading, respectively. Hence, keys must be generated using only the random and unpredictable part. To detrend CSI measurements from deterministic components, a simple and lightweight approach based on Kalman filters is proposed and is evaluated using an implementation of the complete SKG protocol (including privacy amplification that is typically missing in many published works). In our study we use a massive multiple input multiple output (mMIMO) orthogonal frequency division multiplexing outdoor measured CSI dataset. The threat model assumes a passive eavesdropper in the vicinity (at 1 meter distance or less) from one of the legitimate nodes and the Kalman filter is parameterized to maximize the achievable key rate.
A learning-based safety filter is developed for discrete-time linear time-invariant systems with unknown models subject to Gaussian noises with unknown covariance. Safety is characterized using polytopic constraints on the states and control inputs. The empirically learned model and process noise covariance with their confidence bounds are used to construct a robust optimization problem for minimally modifying nominal control actions to ensure safety with high probability. The optimization problem relies on tightening the original safety constraints. The magnitude of the tightening is larger at the beginning since there is little information to construct reliable models, but shrinks with time as more data becomes available.
The central space of a joint distribution $(\vX,Y)$ is the minimal subspace $\mathcal S$ such that $Y\perp\hspace{-2mm}\perp \vX \mid P_{\mathcal S}\vX$ where $P_{\mathcal S}$ is the projection onto $\mathcal S$. Sliced inverse regression (SIR), one of the most popular methods for estimating the central space, often performs poorly when the structural dimension $d=\operatorname{dim}\left( \mathcal S \right)$ is large (e.g., $\geqs 5$). In this paper, we demonstrate that the generalized signal-noise-ratio (gSNR) tends to be extremely small for a general multiple-index model when $d$ is large. Then we determine the minimax rate for estimating the central space over a large class of high dimensional distributions with a large structural dimension $d$ (i.e., there is no constant upper bound on $d$) in the low gSNR regime. This result not only extends the existing minimax rate results for estimating the central space of distributions with fixed $d$ to that with a large $d$, but also clarifies that the degradation in SIR performance is caused by the decay of signal strength. The technical tools developed here might be of independent interest for studying other central space estimation methods.
Context: Although software development is a human activity, Software Engineering (SE) research has focused mostly on processes and tools, making human factors underrepresented. This kind of research may be improved using knowledge from human-focused disciplines. An example of missed opportunities is how SE employs psychometric instruments. Objective: Provide an overview of psychometric instruments in SE research regarding personality and provide recommendations for adopting them. Method: We conducted a systematic mapping to build an overview of instruments used within SE for assessing personality and reviewed their use from a multidisciplinary perspective of SE and social science. Results: We contribute with a secondary study covering fifty years of research (1970 to 2020). One of the most adopted instruments (MBTI) faces criticism within social sciences, and we identified discrepancies between its application and existing recommendations. We emphasize that several instruments refer to the Five-Factor Model, which despite its relevance in social sciences, has no specific advice for its application within SE. We discuss general advice for its proper application. Conclusion: The findings show that the adoption of psychometric instruments regarding personality in SE needs to be improved, ideally with the support of social science researchers. We believe that the review presented in this study can help to understand limitations and to evolve in this direction.
Recently, $(\beta,\gamma)$-Chebyshev functions, as well as the corresponding zeros, have been introduced as a generalization of classical Chebyshev polynomials of the first kind and related roots. They consist of a family of orthogonal functions on a subset of $[-1,1]$, which indeed satisfies a three-term recurrence formula. In this paper we present further properties, which are proven to comply with various results about classical orthogonal polynomials. In addition, we prove a conjecture concerning the Lebesgue constant's behavior related to the roots of $(\beta,\gamma)$-Chebyshev functions in the corresponding orthogonality interval.
This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous Petrov-Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) pp. 12-26) and extends the convergence results from $\mathcal{O}(10^7)$ degrees of freedom (DOFs) to $\mathcal{O}(10^9)$ DOFs using a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. In the uniform refinement setting, a detailed convergence study is provided, demonstrating h and p robust convergence and linear dependence with respect to the wave frequency. The paper concludes with numerical results on hp-adaptive simulations including a large-scale seismic modeling benchmark problem with high material contrast.
We propose a scheme for imaging periodic surfaces using a superlens. By employing an inverse scattering model and the transformed field expansion method, we derive an approximate reconstruction formula for the surface profile, assuming small amplitude. This formula suggests that unlimited resolution can be achieved for the linearized inverse problem with perfectly matched parameters. Our method requires only a single incident wave at a fixed frequency and can be efficiently implemented using fast Fourier transform. Through numerical experiments, we demonstrate that our method achieves resolution significantly surpassing the resolution limit for both smooth and non-smooth surface profiles with either perfect or marginally imperfect parameters.