The biharmonic equation with Dirichlet and Neumann boundary conditions discretized using the mixed finite element method and piecewise linear (with the possible exception of boundary triangles) finite elements on triangular elements has been well-studied for domains in R2. Here we study the analogous problem on polyhedral surfaces. In particular, we provide a convergence proof of discrete solutions to the corresponding smooth solution of the biharmonic equation. We obtain convergence rates that are identical to the ones known for the planar setting. Our proof focuses on three different problems: solving the biharmonic equation on the surface, solving the biharmonic equation in a discrete space in the metric of the surface, and solving the biharmonic equation in a discrete space in the metric of the polyhedral approximation of the surface. We employ inverse discrete Laplacians to bound the error between the solutions of the two discrete problems, and generalize a flat strategy to bound the remaining error between the discrete solutions and the exact solution on the curved surface.
Empirical likelihood is a popular nonparametric statistical tool that does not require any distributional assumptions. In this paper, we explore the possibility of conducting variable selection via Bayesian empirical likelihood. We show theoretically that when the prior distribution satisfies certain mild conditions, the corresponding Bayesian empirical likelihood estimators are posteriorly consistent and variable selection consistent. As special cases, we show the prior of Bayesian empirical likelihood LASSO and SCAD satisfies such conditions and thus can identify the non-zero elements of the parameters with probability tending to 1. In addition, it is easy to verify that those conditions are met for other widely used priors such as ridge, elastic net and adaptive LASSO. Empirical likelihood depends on a parameter that needs to be obtained by numerically solving a non-linear equation. Thus, there exists no conjugate prior for the posterior distribution, which causes the slow convergence of the MCMC sampling algorithm in some cases. To solve this problem, we propose a novel approach, which uses an approximation distribution as the proposal. The computational results demonstrate quick convergence for the examples used in the paper. We use both simulation and real data analyses to illustrate the advantages of the proposed methods.
Missing data is a common problem in clinical data collection, which causes difficulty in the statistical analysis of such data. In this article, we consider the problem under a framework of a semiparametric partially linear model when observations are subject to missingness with complex patterns. If the correct model structure of the additive partially linear model is available, we propose to use a new imputation method called Partial Replacement IMputation Estimation (PRIME), which can overcome problems caused by incomplete data in the partially linear model. Also, we use PRIME in conjunction with model averaging (PRIME-MA) to tackle the problem of unknown model structure in the partially linear model. In simulation studies, we use various error distributions, sample sizes, missing data rates, covariate correlations, and noise levels, and PRIME outperforms other methods in almost all cases. With an unknown correct model structure, PRIME-MA has satisfactory performance in terms of prediction, while slightly worse than PRIME. Moreover, we conduct a study of influential factors in Pima Indians Diabetes data, which shows that our method performs better than the other models.
We develop a spectral method to solve the heat equation in a closed cylinder, achieving a near-optimal $\mathcal{O}(N\log N)$ complexity and high-order, \emph{spectral} accuracy. The algorithm relies on a novel Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method, which improves the complexity of each solve from cubic in the matrix size (in more traditional methods) to log-linear; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{7/3})$ (in traditional methods) to $\mathcal{O}(N\log N)$. Lastly, we provide numerical simulations demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods, and we provide a framework by which this heat equation solver could be applied to the incompressible Navier--Stokes equations. For the latter, we decompose the equations using a poloidal--toroidal (PT) decomposition, turning them into heat equations with nonlinear forcing from the advection term; by using implicit--explicit methods to integrate these, we can achieve the same $\mathcal{O}(N\log N)$ complexity and spectral accuracy achieved here in the heat equation.
Linear regression is a fundamental modeling tool in statistics and related fields. In this paper, we study an important variant of linear regression in which the predictor-response pairs are partially mismatched. We use an optimization formulation to simultaneously learn the underlying regression coefficients and the permutation corresponding to the mismatches. The combinatorial structure of the problem leads to computational challenges. We propose and study a simple greedy local search algorithm for this optimization problem that enjoys strong theoretical guarantees and appealing computational performance. We prove that under a suitable scaling of the number of mismatched pairs compared to the number of samples and features, and certain assumptions on problem data; our local search algorithm converges to a nearly-optimal solution at a linear rate. In particular, in the noiseless case, our algorithm converges to the global optimal solution with a linear convergence rate. Based on this result, we prove an upper bound for the estimation error of the parameter. We also propose an approximate local search step that allows us to scale our approach to much larger instances. We conduct numerical experiments to gather further insights into our theoretical results, and show promising performance gains compared to existing approaches.
In this paper, we give pointwise estimates of a Vorono\"i-based finite volume approximation of the Laplace-Beltrami operator on Vorono\"i-Delaunay decompositions of the sphere. These estimates are the basis for a local error analysis, in the maximum norm, of the approximate solution of the Poisson equation and its gradient. Here, we consider the Vorono\"i-based finite volume method as a perturbation of the finite element method. Finally, using regularized Green's functions, we derive quasi-optimal convergence order in the maximum-norm with minimal regularity requirements. Numerical examples show that the convergence is at least as good as predicted.
High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.
In this paper, we are concerned with the numerical solution for the two-dimensional time fractional Fokker-Planck equation with tempered fractional derivative of order $\alpha$. Although some of its variants are considered in many recent numerical analysis papers, there are still some significant differences. Here we first provide the regularity estimates of the solution. And then a modified $L$1 scheme inspired by the middle rectangle quadrature formula on graded meshes is employed to compensate for the singularity of the solution at $t\rightarrow 0^{+}$, while the five-point difference scheme is used in space. Stability and convergence are proved in the sence of $L^{\infty}$ norm, then a sharp error estimate $\mathscr{O}(\tau^{\min\{2-\alpha, r\alpha\}})$ is derived on graded meshes. Furthermore, unlike the bounds proved in the previous works, the constant multipliers in our analysis do not blow up as the Caputo fractional derivative $\alpha$ approaches the classical value of 1. Finally, we perform the numerical experiments to verify the effectiveness and convergence order of the presented algorithms.
We analyze and validate the virtual element method combined with a projection approach similar to the one in [1, 2], to solve problems on two dimensional domains with curved boundaries approximated by polygonal domains obtained as the union of squared elements out of a uniform structured mesh, such as the one that naturally arise when the domain is issued from an image. We show, both theoretically and numerically, that resorting to the use of polygonal element allows to satisfy the assumptions required for the stability of the projection approach, thus allowing to fully exploit the potential of higher order methods, which makes the resulting approach an effective alternative to the use of the finite element method.
In this paper, we develop a class of mixed finite element methods for the ferrofluid flow model proposed by Shliomis [Soviet Physics JETP, 1972]. We show that the energy stability of the weak solutions to the model is preserved exactly for both the semi- and fully discrete finite element solutions. Furthermore, we prove the existence and uniqueness of the discrete solutions and derive optimal error estimates for both the the semi- and fully discrete schemes. Numerical experiments confirm the theoretical results.
In this paper, we present a sequential decomposition algorithm equivalent of Master equation to compute GMFE of GMFG and graphon optimal Markovian policies (GOMPs) of graphon mean field teams (GMFTs). We consider a large population of players sequentially making strategic decisions where the actions of each player affect their neighbors which is captured in a graph, generated by a known graphon. Each player observes a private state and also a common information as a graphon mean-field population state which represents the empirical networked distribution of other players' types. We consider non-stationary population state dynamics and present a novel backward recursive algorithm to compute both GMFE and GOMP that depend on both, a player's private type, and the current (dynamic) population state determined through the graphon. Each step in computing GMFE consists of solving a fixed-point equation, while computing GOMP involves solving for an optimization problem. We provide conditions on model parameters for which there exists such a GMFE. Using this algorithm, we obtain the GMFE and GOMP for a specific security setup in cyber physical systems for different graphons that capture the interactions between the nodes in the system.